Direct numerical simulation of thermally-stratified turbulent boundary layer subjected to adverse pressure gradient

2016 ◽  
Vol 61 ◽  
pp. 213-228
Author(s):  
Hirofumi Hattori ◽  
Amane Kono ◽  
Tomoya Houra
2002 ◽  
Vol 471 ◽  
pp. 107-136 ◽  
Author(s):  
MARTIN SKOTE ◽  
DAN S. HENNINGSON

Direct numerical simulation of two turbulent boundary layer flows has been performed. The boundary layers are both subject to a strong adverse pressure gradient. In one case a separation bubble is created while in the other the boundary layer is everywhere attached. The data from the simulations are used to investigate scaling laws near the wall, a crucial concept in turbulence models. Theoretical work concerning the inner region in a boundary layer under an adverse pressure gradient is reviewed and extended to the case of separation. Excellent agreement between theory and data from the direct numerical simulation is found in the viscous sub-layer, while a qualitative agreement is obtained for the overlap region.


2019 ◽  
Vol 877 ◽  
pp. 167-195 ◽  
Author(s):  
Feng-Yuan Zuo ◽  
Antonio Memmolo ◽  
Guo-ping Huang ◽  
Sergio Pirozzoli

Direct numerical simulation of the Navier–Stokes equations is carried out to investigate the interaction of a conical shock wave with a turbulent boundary layer developing over a flat plate at free-stream Mach number $M_{\infty }=2.05$ and Reynolds number $Re_{\unicode[STIX]{x1D703}}\approx 630$, based on the upstream boundary layer momentum thickness. The shock is generated by a circular cone with half opening angle $\unicode[STIX]{x1D703}_{c}=25^{\circ }$. As found in experiments, the wall pressure exhibits a distinctive N-wave signature, with a sharp peak right past the precursor shock generated at the cone apex, followed by an extended zone with favourable pressure gradient, and terminated by the trailing shock associated with recompression in the wake of the cone. The boundary layer behaviour is strongly affected by the imposed pressure gradient. Streaks are suppressed in adverse pressure gradient (APG) zones, but re-form rapidly in downstream favourable pressure gradient (FPG) zones. Three-dimensional mean flow separation is only observed in the first APG region associated with the formation of a horseshoe vortex, whereas the second APG region features an incipient detachment state, with scattered spots of instantaneous reversed flow. As found in canonical geometrically two-dimensional wedge-generated shock–boundary layer interactions, different amplification of the turbulent stress components is observed through the interacting shock system, with approach to an isotropic state in APG regions, and to a two-component anisotropic state in FPG. The general adequacy of the Boussinesq hypothesis is found to predict the spatial organization of the turbulent shear stresses, although different eddy viscosities should be used for each component, as in tensor eddy-viscosity models, or in full Reynolds stress closures.


2017 ◽  
Vol 829 ◽  
pp. 392-419 ◽  
Author(s):  
V. Kitsios ◽  
A. Sekimoto ◽  
C. Atkinson ◽  
J. A. Sillero ◽  
G. Borrell ◽  
...  

The statistical properties are presented for the direct numerical simulation of a self-similar adverse pressure gradient (APG) turbulent boundary layer (TBL) at the verge of separation. The APG TBL has a momentum thickness-based Reynolds number range from $Re_{\unicode[STIX]{x1D6FF}_{2}}=570$ to 13 800, with a self-similar region from $Re_{\unicode[STIX]{x1D6FF}_{2}}=10\,000$ to 12 300. Within this domain the average non-dimensional pressure gradient parameter $\unicode[STIX]{x1D6FD}=39$, where for a unit density $\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FF}_{1}P_{\!e}^{\prime }/\unicode[STIX]{x1D70F}_{w}$, with $\unicode[STIX]{x1D6FF}_{1}$ the displacement thickness, $\unicode[STIX]{x1D70F}_{w}$ the mean shear stress at the wall and $P_{\!e}^{\prime }$ the far-field pressure gradient. This flow is compared with previous zero pressure gradient and mild APG TBL ($\unicode[STIX]{x1D6FD}=1$) results of similar Reynolds number. All flows are generated via the direct numerical simulation of a TBL on a flat surface with far-field boundary conditions tailored to apply the desired pressure gradient. The conditions for self-similarity, and the appropriate length and velocity scales, are derived. The mean and Reynolds stress profiles are shown to collapse when non-dimensionalised on the basis of these length and velocity scales. As the pressure gradient increases, the extent of the wake region in the mean streamwise velocity profiles increases, whilst the extent of the log-layer and viscous sublayer decreases. The Reynolds stress, production and dissipation profiles of the APG TBL cases exhibit a second outer peak, which becomes more pronounced and more spatially localised with increasing pressure gradient. This outer peak is located at the point of inflection of the mean velocity profiles, and is suggestive of the presence of a shear flow instability. The maximum streamwise velocity variance is located at a wall normal position of $\unicode[STIX]{x1D6FF}_{1}$ of spanwise wavelength of $2\unicode[STIX]{x1D6FF}_{1}$. In summary as the pressure gradient increases the flow has properties less like a zero pressure gradient TBL and more akin to a free shear layer.


Sign in / Sign up

Export Citation Format

Share Document