Numerical investigations of the wake behind a confined flat plate

2022 ◽  
Vol 94 ◽  
pp. 108924
Author(s):  
D. Aljubaili ◽  
L. Chan ◽  
W. Lu ◽  
A. Ooi
2016 ◽  
Vol 26 (7) ◽  
pp. 2081-2100 ◽  
Author(s):  
Sandra Coumar ◽  
Romain Joussot ◽  
Jean Denis Parisse ◽  
Viviana Lago

Purpose The purpose of this paper is to describe experimental and numerical investigations focussed on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a rarefied Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. The natural flow without actuation exhibits a shock wave with a hyperbolic shape. When the discharge is on, the shock wave shape remains hyperbolic but the shock wave is pushed forward, leading to an increase in the shock wave angle. In order to discriminate thermal effects from purely plasma ones, the plasma actuator is then replaced by an heating element. Design/methodology/approach The experimental study is carried out with the super/hypersonic wind tunnel MARHy located at the ICARE Laboratory in Orléans. The experimental configuration with the heating element is simulated with a code using the 2D full compressible Navier-Stokes equations adapted for the rarefied conditions. Findings For heating element temperatures equal to the flat plate wall surface ones with the discharge on, experimental and numerical investigations showed that the shock wave angle was lower with the heating element, only 50 percent of the values got with the plasma actuator, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed. The results obtained with the numerical simulations are then used to calculate the aerodynamic forces, i.e. the drag and the lift. These numerical results are then extrapolated to the plasma actuator case and it was found that the drag coefficient rises up to 13 percent when the plasma actuator is used, compared to only 5 percent with the heating element. Originality/value This paper matters in the topic of atmospheric entries where flow control, heat management and aerodynamic forces are of huge importance.


Author(s):  
J. P. Robinson ◽  
P. G. Lenhert

Crystallographic studies of rabbit Fc using X-ray diffraction patterns were recently reported. The unit cell constants were reported to be a = 69. 2 A°, b = 73. 1 A°, c = 60. 6 A°, B = 104° 30', space group P21, monoclinic, volume of asymmetric unit V = 148, 000 A°3. The molecular weight of the fragment was determined to be 55, 000 ± 2000 which is in agreement with earlier determinations by other methods.Fc crystals were formed in water or dilute phosphate buffer at neutral pH. The resulting crystal was a flat plate as previously described. Preparations of small crystals were negatively stained by mixing the suspension with equal volumes of 2% silicotungstate at neutral pH. A drop of the mixture was placed on a carbon coated grid and allowed to stand for a few minutes. The excess liquid was removed and the grid was immediately put in the microscope.


Sign in / Sign up

Export Citation Format

Share Document