wave angle
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 31)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Oscar de la Torre ◽  
Martyn Hann ◽  
Jon Miles ◽  
Stuart Stripling ◽  
Deborah Greaves
Keyword(s):  

2021 ◽  
Vol 33 (6) ◽  
pp. 275-286
Author(s):  
Jae-Sang Jung ◽  
Changhoon Lee

In this study, the analytical solution for diffraction near a vertical detached breakwater was suggested by superposing the solutions of diffraction near a semi-infinite breakwater suggested previously using linear wave theory. The solutions of wave forces acting on front, lee and composed wave forces on both side were also derived. Relative wave amplitude changed periodically in space owing to the interactions between diffracting waves and standing waves on front side and the interactions between diffracting waves from both tips of a detached breakwater on lee side. The wave forces on a vertical detached breakwater were investigated with monochromatic, uni-directional random and multi-directional random waves. The maximum composed wave force considering the forces on front and lee side reached maximum 1.6 times of wave forces which doesn’t consider diffraction. This value is larger than the maximum composed wave force of semi-infinite breakwater considering diffraction, 1.34 times, which was suggested by Jung et al. (2021). The maximum composed wave forces were calculated in the order of monochromatic, uni-directional random and multi-directional random waves in terms of intensity. It was also found that the maximum wave force of obliquely incident waves was sometimes larger than that of normally incident waves. It can be known that the considerations of diffraction, the composed wave force on both front and lee side and incident wave angle are important from this study.


2021 ◽  
Vol 153 (A3) ◽  
Author(s):  
A Robbins ◽  
G A Thomas ◽  
M R Renilson ◽  
G J Macfarlane ◽  
I W Dand

Vessel wave wake in deep water is well understood, shallow water less so, specifically the effect of restricted water. This operational zone is highly dynamic and non-linear in nature, thus being worthy of closer examination. The paper reviews the primary mechanisms for unsteadiness in wave wake: starting acceleration and soliton generation. A comprehensive set of experiments was conducted using an NPL catamaran hull form to investigate unsteadiness in both wave height and wave angle. The results show that the unsteadiness was primarily due to soliton generation, and that blockage has a significant effect. As a result, additional metrics, aimed at defining shallow water effects in the transcritical region, are proposed.


2021 ◽  
Vol 155 (A3) ◽  
Author(s):  
A Robbins ◽  
G Thomas ◽  
G Macfarlane ◽  
I Dand ◽  
M Renilson

A master of a vessel must at all times know where their vessel is operating. Traditionally this is only thought of in the geographical sense; however, there is a clear necessity, for safe vessel operations, that the master knows where their vessel is in the hydrodynamic sense. This knowledge is also of prime interest to designing naval architects and route planners alike. Water depth has profound effects on vessel performance and to know When is Water Shallow? is the key to successful vessel operation and wash mitigation. The authors propose a series of characterisations to aid the definition of shallow-water and hence provide greater operational understanding. These characterisations cover typical vessel performance indicators such as resistance, propulsion, manoeuvring, etc., but also wash-specific performance indicators such as wave angle, wave decay, soliton occurrence and spectral output.


2021 ◽  
Vol 155 (A2) ◽  
Author(s):  
A Robbins ◽  
G Thomas ◽  
W Amin ◽  
G Macfarlane ◽  
M Renilson ◽  
...  

This work focuses on characterising vessel wave wake (wash) using wavelet analysis when a vessel is operating in the sub-critical and critical zone. Such characterisation complements other wash characteristics: Froude depth number, bow wave angle, solitons and decay coefficient. The examination of experimental results indicates that differences in characteristics with respect to water depth, Froude depth number, vessel displacement, hull form and soliton generation can be identified through wavelet analysis. The results demonstrate “proof of concept” that wavelet analysis is a powerful tool for characterising vessel wash and captures the effects of key operational and vessel changes.


2021 ◽  
Vol 9 (11) ◽  
pp. 1185
Author(s):  
Maarten van Ormondt ◽  
Dano Roelvink ◽  
Ap van Dongeren

A new set of empirical formulations has been derived to predict wave run-up at naturally sloping sandy beaches. They are obtained by fitting the results of hundreds of XBeach-NH+ model simulations. The simulations are carried out over a wide range of offshore wave conditions (wave heights ranging from 1 to 12 m and periods from 6 to 16 s), and surf zone (Dean parameters aD ranging from 0.05 to 0.30) and beach geometries (slopes ranging from 1:100 to 1:5). The empirical formulations provide estimates of wave set-up, incident and infragravity wave run-up, and total run-up R2%. Reduction coefficients are included to account for the effects of incident wave angle and directional spreading. The formulations have been validated against the Stockdon dataset and show better skill at predicting R2% run-up than the widely used Stockdon relationships. Unlike most existing run-up predictors, the relations presented here include the effect of the surf zone slope, which is shown to be an important parameter for predicting wave run-up. Additionally, this study shows a clear relationship between infragravity run-up and beach slope, unlike most existing predictors.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6428
Author(s):  
Krisna Adi Pawitan ◽  
Hideki Takebe ◽  
Hanley Andrean ◽  
Shuji Misumi ◽  
Jun Fujita ◽  
...  

A challenging wave energy converter design that utilized the denser energy part of the nearshore breaking wave zone to generate electricity was introduced in 2016 by Shintake. The Okinawa Institute of Science and Technology Graduate University’s project aims to take advantage of breaking wave energy to harness electricity. The 2016 version of the device consisted only of a bare turbine and power generator. Early exploration of the design recorded short periods and high impact wave pressures were experienced by the structure, with the turbine unable to harvest energy effectively. Additional structure to not only reduce incoming impact pressure but also increase the duration of water flow through the turbine was needed. These are the main reasons behind incorporating the duct attachment into the design. This paper show that the duct is capable of halving the impact pressure experienced by the turbine and can increase the energy exposure by up to 1.6 times the bare turbine configuration. Furthermore, it is also said that wave angle (β) = 40° is the critical angle, although the duct still increases wave energy exposure to the power take-off up to β = 60°.


2021 ◽  
Vol 9 (9) ◽  
pp. 1028
Author(s):  
Changqing Jiang ◽  
Ould el Moctar ◽  
Thomas E. Schellin

Within the framework of Space@Sea project, an articulated modular floating structurewas developed to serve as building blocks for artificial islands. The modularity was one of the keyelements, intended to provide the desired flexibility of additional deck space at sea. Consequently, the layout of a modular floating concept may change, depending on its functionality and environmental condition. Employing a potential-flow-based numerical model (i.e., weakly nonlinear Green function solver AQWA), this paper studied the hydrodynamic sensitivity of such multibody structures to the number of modules, to the arrangement of these modules, and to the incident wave angle. Results showed that for most wave frequencies, their hydrodynamic characteristics were similar although the floating platforms consisted of a different number of modules. Only translational horizontal motions, i.e., surge and sway, were sensitive to the incident wave angle. The most critical phenomenon occurred at head seas, where waves traveled perpendicularly to the rotation axes of hinged joints, and the hinge forces were largest. Hydrodynamic characteristics of modules attached behind the forth module hardly changed. The highest mooring line tensions arose at low wave frequencies, and they were caused by second-order mean drift forces. First-order forces acting on the mooring lines were relatively small. Apart from the motion responses and mooring tensions, forces acting on the hinge joints governed the system’s design. The associated results contribute to design of optimal configurations of moored and articulated multibody floating islands. 


2021 ◽  
pp. 109963622110288
Author(s):  
Yu-Zhou Wang ◽  
Li Ma

Recently, sandwich structures have been widely used in different fields because of their good mechanical properties, but these structures are weak in acoustic performance. In this paper, by combining pyramidal truss core sandwich structure with frame, a new structure is proposed with both good mechanical properties and excellent acoustic performance at low frequency. An analytical model of the pyramidal truss core sandwich structure with frame is developed to investigate the sound transmission loss (STL) performance. Finite element method (FEM) is also used to investigate the STL performance at low frequency. The effects of the incident wave angle and the geometrical parameters on the STL of the structure are discussed.


2021 ◽  
Vol 4 ◽  
pp. 44-50
Author(s):  
Fella Gaspersz ◽  
Richard B. Luhulima

The marine fisheries catching and processing industry are considered vulnerable to the effects of extreme weather at sea. Global warming effects and El Nino and La Nina have a significant impact on the upwelling process, which impacts the lifestyle and environment of marine biota, including pelagic fish, which is one of the most important contributors to the shipping industry. Extreme weather conditions, with wave heights ranging from 1 to 5 meters, dominate the waters of Maluku. In extreme sea conditions, most fishers choose not to go fishing, not because there are no fish at the fishing grounds, but to avoid mishaps at sea. This research aimed to analyze the critical point of ship roll motion and ship stability. The hull shape employed in this study was a monohull fishing vessel and a trimaran fishing vessel with the same displacement of 21,1 tons. In extreme weather conditions, the Maxsurf software was used to analyze the ship's response, especially the critical point of the ship's roll motion. The I.M.O. Standard was utilized to calculate the ship's stability. The operational speed of the ship was v = 3 knots, with fluctuations in wave angle of incidence between 00 - 1800. Wave heights of 1,0; 2,0; 3,0, and 0,4 meters represent extreme weather conditions in Maluku waters' fishing grounds. The findings revealed that the trimaran hull type had better stability where the inclination angle of trimaran vessel stability was 480 while the monohull was 410. The trimaran fishing vessel was able to withstand a wave height of 3 meters with an inclination angle of 32,560. In comparison, the monohull fishing vessel was able to survive at a wave height of 2 meters with an inclination angle of 24,690. Monohull fishing vessel had a maximum limit of roll motion at wave directions 82 and 99 with a wave height of 3 m, and it reached at the critical point at angles of 43 and 138, at the height of 4 m. Meanwhile, the trimaran fishing vessel had a critical point at a wave angle of 760 and 1000 with a wave height of 4 meters. In the area between those two angles, monohull and trimaran fishing vessels will lose the balance (stability) of the roll motion, resulting in capsize.


Sign in / Sign up

Export Citation Format

Share Document