Sharp interface numerical simulation of directional solidification of binary alloy in the presence of a ceramic particle

2008 ◽  
Vol 51 (1-2) ◽  
pp. 155-168 ◽  
Author(s):  
Yi Yang ◽  
J.W. Garvin ◽  
H.S. Udaykumar
2008 ◽  
Vol 57 (5) ◽  
pp. 3048
Author(s):  
Wang Kuang-Fei ◽  
Guo Jing-Jie ◽  
Mi Guo-Fa ◽  
Li Bang-Sheng ◽  
Fu Heng-Zhi

Silicon ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 775-780 ◽  
Author(s):  
S. Sanmugavel ◽  
M. Srinivasan ◽  
K. Aravinth ◽  
P. Ramasamy

1995 ◽  
Vol 398 ◽  
Author(s):  
A.V. Bune ◽  
D.C. Gillies ◽  
S.L. Lehoczky

ABSTRACTA numerical model of heat transfer by combined conduction, radiation and convection was developed using the FIDAP finite element code for NASA's Advanced Automated Directional Solidification Furnace (AADSF). The prediction of the temperature gradient in an ampoule with HgCdTe is a necessity for the evaluation of whether or not the temperature set points for furnace heaters and the details of cartridge design ensure optimal crystal growth conditions for this material and size of crystal. A prediction of crystal/melt interface shape and the flow patterns in HgCdTe are available using a separate complementary model.


1999 ◽  
Vol 395 ◽  
pp. 253-270 ◽  
Author(s):  
Y.-J. CHEN ◽  
S. H. DAVIS

A steady, two-dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behaviour of the moving front is described by a slow, spatial–temporal dynamics obtained through a multiple-scale analysis. The resulting system has a parametric-excitation structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection in general stabilizes two-dimensional disturbances, but destabilizes three-dimensional disturbances. When the flow is weak, the morphological instability is incommensurate with the flow wavelength, but as the flow gets stronger, the instability becomes quantized and forced to fit into the flow box. At large flow strength the instability is localized, confined in narrow envelopes. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundaries and asymptotics are obtained by a WKB analysis. The weakly nonlinear interaction is delivered through the Lyapunov–Schmidt method.


China Foundry ◽  
2018 ◽  
Vol 15 (5) ◽  
pp. 333-342 ◽  
Author(s):  
Li Feng ◽  
Ya-long Gao ◽  
Ni-ni Lu ◽  
Chang-sheng Zhu ◽  
Guo-sheng An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document