Optimization of Bulk Hgcdte Growth in a Directional Solidification Furnace by Numerical Simulation

1995 ◽  
Vol 398 ◽  
Author(s):  
A.V. Bune ◽  
D.C. Gillies ◽  
S.L. Lehoczky

ABSTRACTA numerical model of heat transfer by combined conduction, radiation and convection was developed using the FIDAP finite element code for NASA's Advanced Automated Directional Solidification Furnace (AADSF). The prediction of the temperature gradient in an ampoule with HgCdTe is a necessity for the evaluation of whether or not the temperature set points for furnace heaters and the details of cartridge design ensure optimal crystal growth conditions for this material and size of crystal. A prediction of crystal/melt interface shape and the flow patterns in HgCdTe are available using a separate complementary model.

2011 ◽  
Vol 337 ◽  
pp. 270-273 ◽  
Author(s):  
Yang Jiang ◽  
Bao Yu Wang ◽  
Zheng Huan Hu ◽  
Jian Guo Lin

The paper investigates a process of cross wedged rolling (CWR) for manufacturing thick-walled hollow axles. A finite element numerical model coupled deformation and heat transfer of CWR is established using commercial finite element software DEFORM-3D. The rolling process of hollow axle during CWR is simulated successfully. The stress, strain and temperature distributions of workpiece are obtained and analyzed. The simulation results show that forming thick-walled hollow axles through CWR is feasible.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zaoyang Li ◽  
Lijun Liu ◽  
Yunfeng Zhang ◽  
Genshu Zhou

We carried out transient global simulations of heating, melting, growing, annealing, and cooling stages for an industrial directional solidification (DS) process for silicon ingots. The crucible thermal conductivity is varied in a reasonable range to investigate its influence on the global heat transfer and silicon crystal growth. It is found that the crucible plays an important role in heat transfer, and therefore its thermal conductivity can influence the crystal growth significantly in the entire DS process. Increasing the crucible thermal conductivity can shorten the time for melting of silicon feedstock and growing of silicon crystal significantly, and therefore large thermal conductivity is helpful in saving both production time and power energy. However, the high temperature gradient in the silicon ingots and the locally concave melt-crystal interface shape for large crucible thermal conductivity indicate that high thermal stress and dislocation propagation are likely to occur during both growing and annealing stages. Based on the numerical simulations, some discussions on designing and choosing the crucible thermal conductivity are presented.


2020 ◽  
Vol 90 (7) ◽  
pp. 1080
Author(s):  
С.А. Смирнов ◽  
В.В. Калаев

Numerical simulation of silicon multi-crystal growth by directional solidification with a square crucible is considered. We validate the use of 2D geometry of the vertical cross section as a computational domain. The model describes melt hydrodynamics, global heat transfer, thermal stresses and the evolution of the dislocation density in the crystal. The sensitivity of the stresses and dislocation density in the Si crystal to the parameters of the Alexander-Haazen model is analyzed.


2003 ◽  
Author(s):  
B. X. Wang ◽  
H. Li ◽  
X. F. Peng ◽  
L. X. Yang

The development of a numerical model for analyzing the effect of the nano-particles’ Brownian motion on the heat transfer is described. By using the Maxwell velocity distribution relations to calculate the most possible velocity of fluid molecules at certain temperature gradient location around the nano-particle, the interaction between fluid molecules and one single nano-particle is analyzed and calculated. Based on this, a syntonic system is proposed and the coupled effect that Brownian motion of nano-particles has on fluid molecules is simulated. This is used to formulate a reasonable analytic method, facilitating laboratory study. The results provide the essential features of the heat transfer process, contributed by micro-convection to be considered.


2014 ◽  
Vol 385 ◽  
pp. 9-15 ◽  
Author(s):  
Zaoyang Li ◽  
Lijun Liu ◽  
Xin Liu ◽  
Yunfeng Zhang ◽  
Jingfeng Xiong

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1285-1290
Author(s):  
STANISLAV ROLC ◽  
JAROSLAV BUCHAR ◽  
ZBYNEK AKSTEIN

The interaction of the flying plate with the Long-rod penetrator has been studied both experimentally and numerically using the LS DYNA 3D finite element code. The influence of the plate velocity and plate material on this interaction has been investigated in details. Numerical results show that there was a relatively large damage of the projectiles. The extent of this damage well agree with our experimental foundings. The numerical simulation of the damaged projectiles with some targets has been also performed


Silicon ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 775-780 ◽  
Author(s):  
S. Sanmugavel ◽  
M. Srinivasan ◽  
K. Aravinth ◽  
P. Ramasamy

2019 ◽  
Vol 262 ◽  
pp. 10001 ◽  
Author(s):  
Dawid Bruski ◽  
Stanisław Burzyński ◽  
Jacek Chróścielewski ◽  
Łukasz Pachocki ◽  
Wojciech Witkowski

The paper presents experiences gained during work with numerical model of Geo Metro vehicle used for simulations of crash tests with road safety barriers. Attention is drawn to the subject of tire/wheel breakage during collision events. Some methods for improvement of the model are presented in the paper. Several results for the normative vehicle numerical tests are introduced. Simulations were carried out using LS-DYNA finite element code with solver version R8.1.


Sign in / Sign up

Export Citation Format

Share Document