flow strength
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 42)

H-INDEX

27
(FIVE YEARS 4)

Author(s):  
Anil Kumar ◽  
Pentyala Srinivasa Rao

Abstract This article deals with the heat transfer enhancement due to buoyancy force in a partially heated square enclosure filled with nanofluids. The model is developed to analyse the behaviour of nanofluids taking into account of volume fraction and stretching parameter, when square horizontal walls are moving in opposite directions to each other. Implicit alternate direct finite difference method has been used to solve the governing equations of vorticity, energy, and kinematics. Graphically investigated the effect of physical pertinent controlling parameters on the dimensionless velocity, streamlines, isothermal, and Nusselt number. The obtained numerical solution achieves the best configuration for Rayleigh number 103 ≤ Ra ≤ 105, stretching parameter 0 ≤ τ ≤ 2.5, and volume fraction 0 ≤ ϕ ≤ 0.2. It is found that the stretching parameter and direction of moving walls affect the fluid flow, flow strength, and heat transfer in the cavity.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1504
Author(s):  
Lifita N. Tande ◽  
Erik Resendiz-Mora ◽  
Valerie Dupont ◽  
Martyn V. Twigg

The autothermal reforming (ATR) of acetic acid (HAc) as a model bio-oil compound is examined via bench scale experiments and equilibrium modelling to produce hydrogen and syngas. This study compares the performance of nickel (Ni-Al, Ni-CaAl) vs. rhodium (Rh-Al) for particulate packed bed (PPB), and of Rh-Al in PPB vs. Rh with and without Ceria for honeycomb monolith (‘M’) catalysts (R-M and RC-M). All PPB and M catalysts used Al2O3 as main support or washcoat, and when not pre-reduced, exhibited good performance with more than 90% of the HAc converted to C1-gases. The maximum H2 yield (6.5 wt.% of feed HAc) was obtained with both the Rh-Al and Ni-CaAl catalysts used in PPB, compared to the equilibrium limit of 7.2 wt.%, although carbon deposition from Ni-CaAl at 13.9 mg gcat−1 h−1 was significantly larger than Rh-Al’s (5.5 mg gcat−1 h−1); close to maximum H2 yields of 6.2 and 6.3 wt.% were obtained for R-M and RC-M respectively. The overall better performance of the Ni-CaAl catalyst over that of the Ni-Al was attributed to the added CaO reducing the acidity of the Al2O3 support, which provided a superior resistance to persistent coke formation. Unlike Rh-Al, the R-M and RC-M exhibited low steam conversions to H2 and CH4, evidencing little activity in water gas shift and methanation. However, the monolith catalysts showed no significant loss of activity, unlike Ni-Al. Both catalytic PPB (small reactor volumes) and monolith structures (ease of flow, strength, and stability) offer different advantages, thus Rh and Ni catalysts with new supports and structures combining these advantages for their suitability to the scale of local biomass resources could help the future sustainable use of biomasses and their bio-oils as storage friendly and energy dense sources of green hydrogen.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1536
Author(s):  
Jan Řehoř ◽  
Rudolf Brázdil ◽  
Ondřej Lhotka ◽  
Miroslav Trnka ◽  
Jan Balek ◽  
...  

Many studies in Europe have investigated the relationship between climatological variables and circulation patterns expressed by various classifications of circulation types. This study provides new insights based on an analysis of precipitation in the western (Bohemia—BOH) and eastern (Moravia and Silesia—M&S) parts of the Czech Republic with respect to the subjective classification of the Czech Hydrometeorological Institute and objective classification based on the flow strength, flow direction, and vorticity during the 1961–2020 period. Circulation types are investigated in regard to their contributions to the total precipitation, mean daily precipitation totals, and precipitation probability (daily totals ≥ 1.0 mm). Types with a westerly airflow and a trough over Central Europe exhibit the highest proportions in precipitation totals. Types with a cyclone over Central Europe, especially combined with a northwestern (BOH) or northeastern (M&S) airflow, result in the highest daily mean totals and precipitation probability. Types with a southwestern airflow transport more precipitation to BOH, while those with a northeastern airflow transport more precipitation to M&S, with a slight seasonal shift in the gradient axis between winter and summer. Circulation types under both classifications are examined from the perspective of their precipitation representation in BOH and M&S and the differences between these two regions. In addition, the suitability of both classifications for precipitation analysis is investigated.


2021 ◽  
Vol 11 (22) ◽  
pp. 10680
Author(s):  
Ateekh Ur Rehman ◽  
Nagumothu Kishore Babu ◽  
Mahesh Kumar Talari ◽  
Yusuf Usmani ◽  
Hisham Alkhalefah

A variable area nozzle integrated into the design of a high-bypass-ratio turbofan engine effectively saves up to 10% in aircraft fuel consumption. Additionally, noise emissions can be lowered at airports during take-off and landing by having better control of the nozzle diameter. Shape memory capabilities of Nitinol alloys could be availed in the form of actuators in the construction of such a nozzle. However, these Nitinol actuators must be joined to Ti-6Al-4V, a prominent alloy making up most of the rest of the nozzle. Because of the huge differences in the physical and metallurgical properties of these alloys, fusion welding is not as effective as solid-state welding. In the current study, a linear friction welding process was adopted to join Ti-6Al-4V to Nitinol successfully. The effect of friction welding on the evolution of weld macro and microstructures; hardness and tensile properties were studied and discussed. The macrostructure of Ti-6Al-4V and Nitinol’s dissimilar joint revealed flash formation mainly on the Ti-6Al-4V side due to its reduced flow strength at high temperatures. Optical microstructures revealed fine grains in Ti-6Al-4V immediately adjacent to the interface due to dynamic recrystallisation and strain hardening effects. In contrast, Nitinol remained mostly unaffected. An intermetallic compound (Ti2Ni) was seen to have formed at the interface due to the extreme rubbing action, and these adversely influenced the tensile strength and elongation values of the joints.


2021 ◽  
Vol 71 (6) ◽  
pp. 822-825
Author(s):  
Prantik Mukhopadhyay

The static recovery of dislocations in aluminium alloys is known to observe during re-heating and inter-annealing of aluminium alloys, so that the fully recrystallised and partially recrystallised grain structures are deliberated respectively for a judicious control on their final tempering of strength, ductility, toughness and crystallographic texture to eliminate the earing related problems. An elaborate physical based static recovery simulator is required to address the trend of dislocation recovery during the time of industrial annealing to evaluate the extent of discontinuously and continuously developed recrystallised aluminium alloys. New industrial annealing practices to develop an extensively wide range of aluminium alloys with the medium to low stacking fault energy range, suitable for their plenty of use in defence vehicles, inevitably demand quantified dislocation density, the decisive element of flow strength. The formulated static recovery rate of the constricted dislocation jogs increases with the stacking fault energy and increases with the industrial annealing temperature. The formulated static recovery of dislocations is found to be very precise and concentric to address the process and materials characteristics, so that it would be liable to define the minute change in the processing temperature, i.e. 50K.


Abstract. Formaldehyde is environment contamination, which causes irritation in the eyes, nose, and throat with concentration above 1.0ppm. But still, it is used as a construction material as an admixture and furthermore to make paints, adhesives, pressed wood, and flooring materials, etc. This paper reviews the impact of formaldehyde in the cement on flow, strength, and durability properties. In this most of the researchers studied the water reducing nature of formaldehyde-based cementitious materials (FBCM) because of its repulsive property, that can ensure improved workability and provides good mechanical strength. Finally, the challenges in the application of formaldehyde in cement-based materials are discussed to conclude some future scope in the field of the construction industry to use formaldehyde in cement.


2021 ◽  
pp. 146808742110378
Author(s):  
Dongchan Kim ◽  
Lingzhe Rao ◽  
Sanghoon Kook ◽  
Heechang Oh ◽  
Seung Woo Lee ◽  
...  

This study performs endoscopic high-speed imaging to enhance the fundamental knowledge of in-cylinder flow structure and flame development process in a selected high-tumble production engine. The endoscopic high-speed particle image velocimetry (eHS-PIV) was performed for varied engine speeds and intake valve closing (IVC) timings to evaluate their impact on the in-cylinder flow structure in a motored engine condition. On another endoscope engine sharing the same hardware, high-speed flame imaging was conducted to visualise spark stretch and flame propagation. The flow and flame measurements were repeated for over 100 cycles and the ensemble-averaged results are compared. The eHS-PIV showed that a strong tumble vortex is generated during the piston compression with the flow directed towards the exhaust side. As the piston reaches top dead centre (TDC), however, a complex flow breakup involving multiple flow components occurs. This is followed by lateral flow vectors travelling back towards the intake side, which is termed as the bounce-back flow. For a tested engine speed range of 1700–2700 revolutions per minute (rpm), 2500 rpm shows the most significant bounce-back flow as a result of competition between the remaining exhaust-ward tumble flow strength and the newly formed bounce-back flow strength. At a retarded IVC timing, the flow loss leads to a weakened tumble flow and subsequently no bounce-back flow formation to maintain the exhaust-ward TDC flow direction. From the comparison between the flow results and spark/flame high-speed images, a strong positive correlation is found between the TDC flow direction and spark plasma stretch, and subsequently the flame propagation direction. The findings indicate that the TDC flow direction should be considered as a key parameter in the engine design and operating condition settings.


2021 ◽  
Vol 17 (4) ◽  
pp. e1008826
Author(s):  
Steffen Lange ◽  
Benjamin M. Friedrich

Sperm of marine invertebrates have to find eggs cells in the ocean. Turbulent flows mix sperm and egg cells up to the millimeter scale; below this, active swimming and chemotaxis become important. Previous work addressed either turbulent mixing or chemotaxis in still water. Here, we present a general theory of sperm chemotaxis inside the smallest eddies of turbulent flow, where signaling molecules released by egg cells are spread into thin concentration filaments. Sperm cells ‘surf’ along these filaments towards the egg. External flows make filaments longer, but also thinner. These opposing effects set an optimal flow strength. The optimum predicted by our theory matches flow measurements in shallow coastal waters. Our theory quantitatively agrees with two previous fertilization experiments in Taylor-Couette chambers and provides a mechanistic understanding of these early experiments. ‘Surfing along concentration filaments’ could be a paradigm for navigation in complex environments in the presence of turbulent flow.


2021 ◽  
Author(s):  
Georg Sebastian Voelker ◽  
Mark Schlutow

<p>Internal gravity waves are a well-known mechanism of energy redistribution in stratified fluids such as the atmosphere. They may propagate from their generation region, typically in the Troposphere, up to high altitudes. During their lifetime internal waves couple to the atmospheric background through various processes. Among the most important interactions are the exertion of wave drag on the horizontal mean-flow, the heat generation upon wave breaking, or the mixing of atmospheric tracers such as aerosols or greenhouse gases.</p><p>Many of the known internal gravity wave properties and interactions are covered by linear or weakly nonlinear theories. However, for the consideration of some of the crucial effects, like a reciprocal wave-mean-flow interaction including the exertion of wave drag on the mean-flow, strongly nonlinear systems are required. That is, there is no assumption on the wave amplitude relative to the mean-flow strength such that they may be of the same order.</p><p>Here, we exploit a strongly nonlinear Boussinesq theory to analyze the stability of a stationary internal gravity wave which is refracted at the vertical edge of a horizontal jet. Thereby we assume that the incident wave is horizontally periodic, non-hydrostatic, and vertically modulated. Performing a linear stability analysis in the vicinity of the jet edge we find necessary and sufficient criteria for instabilities to grow. In particular, the refracted wave becomes unstable if its incident amplitude is large enough and both mean-flow horizontal winds, below and above the edge of the jet, do not exceed particular upper bounds.</p>


Biorheology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Ying Chen ◽  
Yunmei Yang ◽  
Wenchang Tan ◽  
Liqin Fu ◽  
Xiaoyan Deng ◽  
...  

BACKGROUND: Heart failure (HF) is a common disease globally. Ventricular assist devices (VADs) are widely used to treat HF. In contrast to the natural heart, different VADs generate different blood flow waves in the aorta. OBJECTIVE: To explore whether the different inflow rate waveforms from the ascending aorta generate far-reaching hemodynamic influences on the human aortic arch. METHODS: An aortic geometric model was reconstructed based on computed tomography data of a patient with HF. A total of five numerical simulations were conducted, including a case with the inflow rate waveforms from the ascending aorta with normal physiological conditions, two HF, and two with typical VAD support. The hemodynamic parameters, wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), and the strength of the helical flow, were calculated. RESULTS: In contrast to the natural heart, numerical simulation showed HF decreasing WSS and inducing higher OSI and RRT. Moreover, HF weakened helical flow strength. Pulsatile flow VADs will elevated the WSS, inducing some helical flow, while continuous flow VAD could not produce any helical flow. CONCLUSIONS: HF leads to an adverse hemodynamic environment by decreasing WSS and reducing the helical flow strength. Pulsatile flow VADs are more advantageous than the continuous flow VADs on hemodynamic effects. Thus, pulsatile flow VADs may be a better option for patients with HF.


Sign in / Sign up

Export Citation Format

Share Document