Effect of magnetic field on near-wall coherent structures and heat transfer in magnetohydrodynamic turbulent channel flow of low Prandtl number fluids

2011 ◽  
Vol 54 (15-16) ◽  
pp. 3594-3604 ◽  
Author(s):  
C.D. Dritselis ◽  
N.S. Vlachos
2017 ◽  
Vol 830 ◽  
pp. 300-325 ◽  
Author(s):  
Hiroyuki Abe ◽  
Robert Anthony Antonia

Integration across a fully developed turbulent channel flow of the transport equations for the mean and turbulent parts of the scalar dissipation rate yields relatively simple relations for the bulk mean scalar and wall heat transfer coefficient. These relations are tested using direct numerical simulation datasets obtained with two isothermal boundary conditions (constant heat flux and constant heating source) and a molecular Prandtl number Pr of 0.71. A logarithmic dependence on the Kármán number $h^{+}$ is established for the integrated mean scalar in the range $h^{+}\geqslant 400$ where the mean part of the total scalar dissipation exhibits near constancy, whilst the integral of the turbulent scalar dissipation rate $\overline{\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}}$ increases logarithmically with $h^{+}$. This logarithmic dependence is similar to that established in a previous paper (Abe & Antonia, J. Fluid Mech., vol. 798, 2016, pp. 140–164) for the bulk mean velocity. However, the slope (2.18) for the integrated mean scalar is smaller than that (2.54) for the bulk mean velocity. The ratio of these two slopes is 0.85, which can be identified with the value of the turbulent Prandtl number in the overlap region. It is shown that the logarithmic $h^{+}$ increase of the integrated mean scalar is intrinsically associated with the overlap region of $\overline{\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}}$, established for $h^{+}$ (${\geqslant}400$). The resulting heat transfer law also holds at a smaller $h^{+}$ (${\geqslant}200$) than that derived by assuming a log law for the mean temperature.


2015 ◽  
Vol 776 ◽  
pp. 512-530 ◽  
Author(s):  
S. Leonardi ◽  
P. Orlandi ◽  
L. Djenidi ◽  
R. A. Antonia

Direct numerical simulations (DNS) are carried out to study the passive heat transport in a turbulent channel flow with either square bars or circular rods on one wall. Several values of the pitch (${\it\lambda}$) to height ($k$) ratio and two Reynolds numbers are considered. The roughness increases the heat transfer by inducing ejections at the leading edge of the roughness elements. The amounts of heat transfer and mixing depend on the separation between the roughness elements, an increase in heat transfer accompanying an increase in drag. The ratio of non-dimensional heat flux to the non-dimensional wall shear stress is higher for circular rods than square bars irrespectively of the pitch to height ratio. The turbulent heat flux varies within the cavities and is larger near the roughness elements. Both momentum and thermal eddy diffusivities increase relative to the smooth wall. For square cavities (${\it\lambda}/k=2$) the turbulent Prandtl number is smaller than for a smooth channel near the wall. As ${\it\lambda}/k$ increases, the turbulent Prandtl number increases up to a maximum of 2.5 at the crests plane of the square bars (${\it\lambda}/k=7.5$). With increasing distance from the wall, the differences with respect to the smooth wall vanish and at three roughness heights above the crests plane, the turbulent Prandtl number is essentially the same for smooth and rough walls.


2020 ◽  
Vol 85 ◽  
pp. 108662 ◽  
Author(s):  
Leandra I. Abreu ◽  
André V.G. Cavalieri ◽  
Philipp Schlatter ◽  
Ricardo Vinuesa ◽  
Dan S. Henningson

Author(s):  
Takahiro Tsukahara ◽  
Takahiro Ishigami ◽  
Junya Kurano ◽  
Yasuo Kawaguchi

Direct numerical simulations (DNS) of a drag-reducing viscoelastic turbulent channel flow with heat transfer had been carried out for three kinds of rheologically different fluids (e.g., different values of Weissenberg number). The molecular Prandtl number was set to be 0.1–2.0. A uniform heat-flux condition was employed as the thermal boundary condition. In this paper, we present various statistical turbulence quantities including the mean and fluctuating temperatures, the Nusselt number (Nu), and the cross-correlation coefficients and discuss about their dependence on the rheological parameters and the Prandtl-number dependency of the obtained drag-reduction rate and heat-transfer reduction rate.


Sign in / Sign up

Export Citation Format

Share Document