The flow equation for a nanoscale fluid flow

Author(s):  
Yongbin Zhang
2017 ◽  
Vol 10 (9) ◽  
pp. 685-690 ◽  
Author(s):  
Oliver Plümper ◽  
Alexandru Botan ◽  
Catharina Los ◽  
Yang Liu ◽  
Anders Malthe-Sørenssen ◽  
...  

2006 ◽  
Vol 18 (3) ◽  
pp. 032104 ◽  
Author(s):  
J. Koplik ◽  
T. S. Lo ◽  
M. Rauscher ◽  
S. Dietrich

2018 ◽  
Vol 12 (1) ◽  
pp. 80-80
Author(s):  
Oliver Plümper ◽  
Alexandru Botan ◽  
Catharina Los ◽  
Yang Liu ◽  
Anders Malthe-Sørenssen ◽  
...  

2021 ◽  
Author(s):  
V R Sanal Kumar ◽  
Vigneshwaran Sankar ◽  
Nichith Chandrasekaran ◽  
Sulthan Ariff Rahman Mohamed Rafic ◽  
Ajith Sukumaran ◽  
...  

Abstract Although the interdisciplinary science of nanotechnology has been advanced significantly over the last few decades there were no closed-form analytical models to predict the three-dimensional (3D) boundary-layer-blockage (BLB) factor, of diabatic flows (flows involves the transfer of heat) passing through a nanoscale tube. As the pressure of the diabatic nanofluid and/or non-continuum-flows rises, average-mean-free-path diminishes and thus, the Knudsen number lowers heading to a zero-slip wall-boundary condition with the compressible viscous flow regime in the nano scale tubes leading to Sanal flow choking [PMCID: PMC7267099; Physics of Fluids, DOI: 10.1063/5.0040440] creating a physical situation of the sonic-fluid-throat effect in the tube at a critical-total-to-static pressure ratio (CPR). Herein, we presented a closed-form-analytical-model, which is capable to predict exactly the 3D-BLB factor at the Sanal flow choking-condition of nanoscale diabatic fluid flow systems at the zero-slip-length. The innovation of Sanal flow choking model in the nanoscale fluid flow system is established herein through the entropy relation, as it satisfies all the conservation laws of nature. The exact value of the 3D-BLB factor in the sonic-fluid-throat region presented herein for each gas is a universal benchmark data for performing high-fidelity in silico, in vitro and in vivo experiments for the lucrative design optimization of nanoscale fluid flow systems in gravity and microgravity environments and also for drug discovery for prohibiting asymptomatic cardiovascular diseases in Earth and human spaceflight <doi.org/10.2514/6.2021-0357>. Note that the relatively high and low-blood-viscosity (creating high turbulence) leads to the Sanal flow choking causing asymptomatic cardiovascular diseases. Such diseases in the cardiovascular system can be negated by maintaining the systolic-to-diastolic blood pressure ratio lower than the CPR <10.1002/gch2.202000076>. The CPR is regulated by the heat capacity ratio (HCR) of the fluid. Note that HCR is the key parameter, which could control simultaneously blood viscosity and turbulence. The physical insight of the boundary-layer-blockage persuaded nanoscale Sanal flow choking in diabatic flows presented in this article sheds light on finding solutions to numerous unresolved scientific problems in physical, chemical and biological systems carried forward over the centuries because the closed-form analytical model describing the phenomenon of Sanal flow choking is a unique scientific language of the real-world-fluid flows. More specifically, mathematical models presented herein are capable to forecast the limiting conditions of deflagration to detonation transition (DDT) in nanoscale systems and beyond with confidence. Additionally, the Sanal flow choking condition will forecast the asymptomatic-hemorrhage and acute-heart-failure https://www.ahajournals.org/doi/10.1161/str.52.suppl_1.P804. Briefly, the undesirable Sanal flow choking causing detonation and hemorrhagic stroke can be negated by increasing the HCR of the fluid.


Soft Matter ◽  
2012 ◽  
Vol 8 (35) ◽  
pp. 9221 ◽  
Author(s):  
Fabian Dörfler ◽  
Markus Rauscher ◽  
Joel Koplik ◽  
Jens Harting ◽  
S. Dietrich

Author(s):  
Kirsten L. Peterson ◽  
Marc D. Compere ◽  
Yosef S. Allam ◽  
Bernard J. Van Wie

This paper presents the design and testing of a fluid loss characterization device for use in engineering education as a classroom or laboratory demonstration in a core curriculum fluid dynamics course. The design is specifically tailored for clear demonstration of the abstract concept of fluid loss in a way that supports collaborative, hands-on, active, and problem-based learning. This stand-alone device is intended as a prototype for a Desktop Learning Module (DLM) cartridge. The DLM module framework was developed by engineering educators at Washington State University as part of a collaborative NSF-sponsored program. The fluid loss characterization device was sponsored by the Embry-Riddle Aeronautical University Honors Program in Daytona Beach, Florida. The purpose of the experiment is to have students determine the loss coefficients and friction factors of different piping components in a fluid flow system. The experiment involves measuring volumetric flowrate changes in the system due to the introduction of minor and major losses. A pump circulates water at a specified rate tunable by the students to achieve a steady state flow condition. Height sensors report tank heights and a flow meter shows volumetric flow rate which is verifiable with student’s data collection. A graphical computer interface allows students to control pump rate and also reports tank height in real time. The computer and height sensors are not critical to the learning objectives and may be replaced with rulers and a potentiometer for motor control. The educational goals are for students to gain a better understanding of the transition between Bernoulli’s flow equation and the Energy equation, to study major and minor losses, and experimentally determine volumetric flowrate. Fluid flow loss concepts can be reinforced by experimentally verifying these concepts immediately after presenting them on the whiteboard. Educational assessments measuring gains with pre- and post-tests and a conceptual test one week later were performed with a control group and experimental group. Results are presented that allow direct comparison between a hands-on activity versus conventional lecture-based instruction alone. The results indicate no statistically significant differences in gains between control and treatment groups; however the trend indicates improved ability to describe abstract concepts on the material 1 week later in the experiment group. The most promising results show that a greater percentage of students who were actively involved with the demonstration increased their scores from post- to conceptual assessment. This agrees with previously published results on CHAPL [1]. The majority of passive observers showed decreased scores. These results warrant more devices be built and tested to engage the entire class in the hands-on collaborative experiment.


Sign in / Sign up

Export Citation Format

Share Document