Numerical simulation of flow and heat transfer in composite PCM on the basis of two different models of open-cell metal foam skeletons

Author(s):  
Zhuqian Zhang ◽  
Ji Cheng ◽  
Xiande He
2021 ◽  
Vol 2085 (1) ◽  
pp. 012028
Author(s):  
Zhongli Li ◽  
Peng Hu

Abstract Open cell foam metal has the characteristics of high porosity and large specific surface area. And it has developed rapidly in the related research of heat exchanger. Aiming at the convective heat transfer process of open cell metal structure with high porosity, a two-dimensional stochastic distribution model is established. Numerical simulation is carried out using the single-relaxation-time dual-distribution-function lattice-Boltzmann-method (BGK-DDF-LBM). For the non-ideal solid particles with unequal diameter and incomplete circular structure, the flow field is analyzed by taking the porosity of 0.964 as an example, and the dimensionless permeability is calculated. When the porosity is constant, the Nusselt number of the porous section increases with the increases of Reynolds number in the range of 10 to 100, which shows heat transfer performance. In addition, the Nusselt number of the porous section increases with the increase of porosity in the range of porosity from 0.900 to 0.980.


2015 ◽  
Vol 80 ◽  
pp. 347-354 ◽  
Author(s):  
Mohammad Zafari ◽  
Masoud Panjepour ◽  
Mohsen Davazdah Emami ◽  
Mahmood Meratian

Sign in / Sign up

Export Citation Format

Share Document