pore scale model
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 1)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 318
Author(s):  
Jia Li ◽  
Ming-Ming Mao ◽  
Min Gao ◽  
Qiang Chen ◽  
Jun-Rui Shi ◽  
...  

In this paper, the flame dynamics in a thermal flow reversal reactor are studied using a multi-scale model. The challenges of the multi-scale models lie in the data exchanges between different scale models and the capture of the flame movement of the filtered combustion by the pore-scale model. Through the multi-scale method, the computational region of the porous media is divided into the inlet preheating zone, reaction zone, and outlet exhaust zone. The three models corresponding to the three zones are calculated by volume average method, pore-scale method, and volume average method respectively. Temperature distribution is used as data for real-time exchange. The results show that the multi-scale model can save computation time when compared with the pore-scale model. Compared with the volumetric average model, the multi-scale model can capture the flame front and predict the flame propagation more accurately. The flame propagation velocity increases and the flame thickness decreases with the increase of inlet flow rates and mixture concentration. In addition, the peak value of the initial temperature field and the width of the high-temperature zone also affect the flame propagation velocity and flame thickness.


2021 ◽  
Vol 189 ◽  
pp. 116611
Author(s):  
Binqi Rao ◽  
Hongru Pang ◽  
Feibiao Fan ◽  
Jicheng Zhang ◽  
Peng Xu ◽  
...  

SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Jiahui You ◽  
Kyung Jae Lee

Summary Hydrochloric acid (HCl) is commonly used in acid fracturing. Given that the interaction between acid and rock affects multiphase flow behaviors, it is important to thoroughly understand the relevant phenomena. The Darcy-Brinkman-Stokes (DBS) method is most effective in describing the matrix-fracture system among the proposed models. This study aims to analyze the impact of acid-rock interaction on multiphase flow behavior by developing a pore-scale numerical model applying the DBS method. The new pore-scale model is developed based on OpenFOAM, an open-source platform for the prototyping of diverse flow mechanisms. The developed simulation model describes the fully coupled mass balance equation and the chemical reaction of carbonate acidizing in an advection-diffusion regime. The volume of fluid (VOF) method is used to track the liquid- and gas-phase interface on fixed Eulerian grids. Here, the penalization method is applied to describe the wettability condition on immersed boundaries. The equations of saturation, concentration, and diffusion are solved successively, and the momentum equation is solved by pressure implicit with splitting of operators method. The simulation results of the developed numerical model have been validated with experimental results. Various injection velocities and the second Damkohler numbers have been examined to investigate their impacts on the CO2 bubble generation, evolving porosity, and rock surface area. We categorized the evolving carbon dioxide (CO2) distribution into three patterns in terms of the Damkohler number and the Péclet number. We also simulated a geometry model with multiple grains and a Darcy-scale model using the input parameters found from the pore-scale simulations. The newly developed pore-scale model provides the fundamental knowledge of physical and chemical phenomena of acid-rock interaction and their impact on acid transport. The modeling results describing mineral acidization will help us implement a practical fracturing project.


2020 ◽  
Vol 7 (2) ◽  
pp. 191337
Author(s):  
Xianzhe Lv ◽  
Xiaoyu Liang ◽  
Peng Xu ◽  
Linya Chen

In order to explore the factors affecting coal spontaneous combustion, the fractal characteristics of coal samples are tested, and a pore-scale model for oxygen adsorption in coal porous media is developed based on self-similar fractal model. The liquid nitrogen adsorption experiments show that the coal samples indicate evident fractal scaling laws at both low-pressure and high-pressure sections, and the fractal dimensions, respectively, represent surface morphology and pore structure of coal rock. The pore-scale model has been validated by comparing with available experimental data and numerical simulation. The present numerical results indicate that the oxygen adsorption depends on both the pore structures and temperature of coal rock. The oxygen adsorption increases with increased porosity, fractal dimension and ratio of minimum to maximum pore sizes. The edge effect can be clearly seen near the cavity/pore, where the oxygen concentration is low. The correlation between the oxygen adsorption and temperature is found to obey Langmuir adsorption theory, and a new formula for oxygen adsorption and porosity is proposed. This study may help understanding the mechanisms of oxygen adsorption and accordingly provide guidelines to lower the risk of spontaneous combustion of coal.


Sign in / Sign up

Export Citation Format

Share Document