MHD mixed convective stagnation point flow along a vertical stretching sheet with heat source/sink

Author(s):  
P.R. Sharma ◽  
Sharad Sinha ◽  
R.S. Yadav ◽  
Anatoly N. Filippov
2017 ◽  
Vol 374 ◽  
pp. 92-105 ◽  
Author(s):  
S.R. Mishra ◽  
B. Nayak ◽  
R.P. Sharma

The steady boundary layer magnetohydrodynamic stagnation- point flow past a stretching sheet through porous media in the presence of heat source /sink has been studied. Dissipative effects such as viscous, Joule and Darcy dissipation are also considered in the present study. The governing nonlinear coupled partial differential equations are modified into self-similar ordinary differential equations by appropriate similarity transformations and then the transmuted equations are numerically solved by Runge-Kutta fourth order method. Particular importance of pertinent physical parameters of interest which cover velocity ratio parameter, magnetic parameter, porous matrix, Prandtl number, Eckert number, temperature index parameter and heat source parameter. The outcomes acquired for velocity, temperature and skin friction has been displayed in tables and graphs. For the verification of the present outcomes with the earlier published results in a particular case is also presented and it is found that the present result is in good agreement.


2017 ◽  
Vol 11 ◽  
pp. 182-190
Author(s):  
Gauri Shenkar Seth ◽  
Rohit Sharma ◽  
B. Kumbhakar ◽  
R. Tripathi

An investigation is carried out for the steady, two dimensional stagnation point flow of a viscous, incompressible, electrically conducting, optically thick heat radiating fluid taking viscous dissipation into account over an exponentially stretching non-isothermal sheet with exponentially moving free-stream in the presence of uniform transverse magnetic field and non-uniform heat source/sink. The governing boundary layer equations are transformed into highly nonlinear ordinary differential equations using suitable similarity transform. Resulting boundary value problem is solved numerically with the help of 4th-order Runge-Kutta Gill method along with shooting technique. Effects of various pertinent flow parameters on the velocity, temperature field, skin friction and Nusselt number are described through figures and tables. Also, the present numerical results are compared with the earlier published results for some reduced case and a good agreement has been found among those results.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Macha Madhu ◽  
Naikoti Kishan

Two-dimensional MHD mixed convection boundary layer flow of heat and mass transfer stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface in the presence of thermal radiation and heat source/sink is investigated numerically. The non-Newtonian nanofluid model incorporates the effects of Brownian motion and thermophoresis. The basic transport equations are made dimensionless first and the complete nonlinear differential equations with associated boundary conditions are solved numerically by finite element method (FEM). The numerical calculations for velocity, temperature, and nanoparticles volume fraction profiles for different values of the physical parameters to display the interesting aspects of the solutions are presented graphically and discussed. The skin friction coefficient, the local Nusslet number and the Sherwood number are exhibited and examined. Our results are compatible with the existing results for a special case.


Sign in / Sign up

Export Citation Format

Share Document