Effect of radiation and Navier slip boundary of Walters’ liquid B flow over a stretching sheet in a porous media

Author(s):  
U.S. Mahabaleshwar ◽  
Ioannis E. Sarris ◽  
Giulio Lorenzini
2021 ◽  
pp. 1-21
Author(s):  
Claudia Gariboldi ◽  
Takéo Takahashi

We consider an optimal control problem for the Navier–Stokes system with Navier slip boundary conditions. We denote by α the friction coefficient and we analyze the asymptotic behavior of such a problem as α → ∞. More precisely, we prove that if we take an optimal control for each α, then there exists a sequence of optimal controls converging to an optimal control of the same optimal control problem for the Navier–Stokes system with the Dirichlet boundary condition. We also show the convergence of the corresponding direct and adjoint states.


2017 ◽  
Vol 828 ◽  
pp. 271-288 ◽  
Author(s):  
Tak Shing Chan ◽  
Joshua D. McGraw ◽  
Thomas Salez ◽  
Ralf Seemann ◽  
Martin Brinkmann

We investigate the dewetting of a droplet on a smooth horizontal solid surface for different slip lengths and equilibrium contact angles. Specifically, we solve for the axisymmetric Stokes flow using the boundary element method with (i) the Navier-slip boundary condition at the solid/liquid boundary and (ii) a time-independent equilibrium contact angle at the contact line. When decreasing the rescaled slip length $\tilde{b}$ with respect to the initial central height of the droplet, the typical non-sphericity of a droplet first increases, reaches a maximum at a characteristic rescaled slip length $\tilde{b}_{m}\approx O(0.1{-}1)$ and then decreases. Regarding different equilibrium contact angles, two universal rescalings are proposed to describe the behaviour of the non-sphericity for rescaled slip lengths larger or smaller than $\tilde{b}_{m}$. Around $\tilde{b}_{m}$, the early time evolution of the profiles at the rim can be described by similarity solutions. The results are explained in terms of the structure of the flow field governed by different dissipation channels: elongational flows for $\tilde{b}\gg \tilde{b}_{m}$, friction at the substrate for $\tilde{b}\approx \tilde{b}_{m}$ and shear flows for $\tilde{b}\ll \tilde{b}_{m}$. Following the changes between these dominant dissipation mechanisms, our study indicates a crossover to the quasistatic regime when $\tilde{b}$ is many orders of magnitude smaller than $\tilde{b}_{m}$.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zulqurnain Sabir ◽  
Rizwan Akhtar ◽  
Zhu Zhiyu ◽  
Muhammad Umar ◽  
Ali Imran ◽  
...  

In this study, an attempt is made to explore the two-phase Casson nanofluid passing through a stretching sheet along a permeable surface with the effects of chemical reactions and gyrotactic microorganisms. By utilizing the strength of similarity transforms the governing PDEs are transformed into set of ODEs. The resulting equations are handled by using a proficient numerical scheme known as the shooting technique. Authenticity of numerical outcomes is established by comparing the achieved results with the MATLAB built-in solver bvp4c. The numerical outcomes for the reduced Nusselt number and Sherwood number are exhibited in the tabular form, while the variations of some crucial physical parameters on the velocity, temperature, and concentration profiles are demonstrated graphically. It is observed that Local Nusselt number rises with the enhancement in the magnetic field parameter, the porous media parameter, and the chemical reactions, while magnetic field parameter along with porous media parameter retards the velocity profile.


Sign in / Sign up

Export Citation Format

Share Document