Solution of Gill’s generalized dispersion model: Solute transport in Poiseuille flow with wall absorption

Author(s):  
W.Q. Jiang ◽  
G.Q. Chen
2006 ◽  
Vol 42 (3) ◽  
Author(s):  
Zhi-Qiang Deng ◽  
João L. M. P. de Lima ◽  
M. Isabel P. de Lima ◽  
Vijay P. Singh

2017 ◽  
Vol 828 ◽  
pp. 733-752 ◽  
Author(s):  
Li Zhang ◽  
Marc A. Hesse ◽  
Moran Wang

Previous work on solute transport with sorption in Poiseuille flow has reached contradictory conclusions. Some have concluded that sorption increases mean solute transport velocity and decreases dispersion relative to a tracer, while others have concluded the opposite. Here we resolve this contradiction by deriving a series solution for the transient evolution that recovers previous results in the appropriate limits. This solution shows a transition in solute transport behaviour from early to late time that is captured by the first- and zeroth-order terms. Mean solute transport velocity is increased at early times and reduced at late times, while solute dispersion is initially reduced, but shows a complex dependence on the partition coefficient $k$ at late times. In the equilibrium sorption model, the time scale of the early regime and the duration of the transition to the late regime both increase with $\ln k$ for large $k$. The early regime is pronounced in strongly sorbing systems ($k\gg 1$). The kinetic sorption model shows a similar transition from the early to the late transport regime and recovers the equilibrium results when adsorption and desorption rates are large. As the reaction rates slow down, the duration of the early regime increases, but the changes in transport velocity and dispersion relative to a tracer diminish. In general, if the partition coefficient $k$ is large, the early regime is well developed and the behaviour is well characterized by the analysis of the limiting case without desorption.


2019 ◽  
Vol 22 (6) ◽  
pp. 1517-1536 ◽  
Author(s):  
Yingjie Liang ◽  
Ninghu Su ◽  
Wen Chen

Abstract This paper presents a time-space Hausdorff derivative model for depicting solute transport in aquifers or water flow in heterogeneous porous media. In this model, the time and space Hausdorff derivatives are defined on non-Euclidean fractal metrics with power law scaling transform which, respectively, connect the temporal and spatial complexity during transport. The Hausdorff derivative model can be transformed to an advection-dispersion equation with time- and space-dependent dispersion and convection coefficients. This model is a fractal partial differential equation (PDE) defined on a fractal space and differs from the fractional PDE which is derived for non-local transport of particles on a non-fractal Euclidean space. As an example of applications of this model, an explicit solution with a constant diffusion coefficient and flow velocity subject to an instantaneous source is derived and fitted to the breakthrough curves of tritium as a tracer in porous media. These results are compared with those of a scale-dependent dispersion model and a time-scale dependent dispersion model. Overall, it is found that the fractal PDE based on the Hausdorff derivatives better captures the early arrival and heavy tail in the scaled breakthrough curves for variable transport distances. The estimated parameters in the fractal Hausrdorff model represent clear mechanisms such as linear relationships between the orders of Hausdorff derivatives and the transport distance. The mathematical formulation is applicable to both solute transport and water flow in porous media.


Author(s):  
Lichun Wang ◽  
M. Bayani Cardenas

We present an exact expression for the upscaled dynamic dispersion coefficient (D) for one-dimensional transport by Hagen-Poiseuille flow which is the basis for modeling transport in porous media idealized as capillary tubes. The theoretical model is validated by comparing the breakthrough curves (BTCs) from a 1D advection-dispersion model with dynamic D to that from direct numerical solutions utilizing a 2D advection-diffusion model. Both Taylor dispersion theory and our new theory are good predictors of D at lower Peclet Number (Pe) regime, but gradually fail to capture most parts of BTCs as Pe increases. However, our model generally predicts the mixing and spreading of solutes better than Taylor’s theory since it covers all transport regimes from molecular diffusion, through anomalous transport, and to Taylor dispersion. The model accurately predicts D based on the early part of BTCs even at relatively high Pe regime (~62) where the Taylor’s theory fails. Furthermore, the model allows for calculation of the time scale that separates Fickian from non-Fickian transport. Therefore, our model can readily be used to calculate dispersion through short tubes of arbitrary radii such as the pore throats in a pore network model.


Sign in / Sign up

Export Citation Format

Share Document