DISPERSION OF A SOLUTE IN A COUPLE STRESS FLUID WITH CHEMICAL REACTION USING GENERALIZED DISPERSION MODEL

2020 ◽  
Vol 9 (4) ◽  
pp. 2233-2247
Author(s):  
N. P. Ratchagar ◽  
R. Vijayakumar
2013 ◽  
Vol 19 (1) ◽  
pp. 45-55 ◽  
Author(s):  
D. Srinivasacharya ◽  
K. Kaladhar

The Soret and Dufour effects in the presence of chemical reaction on natural convection heat and mass transfer of a couple stress fluid in a vertical channel formed by two vertical parallel plates is presented. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using Homotopy Analysis Method (HAM). Profiles of dimensionless velocity, temperature and concentration are shown graphically for various values of Dufour number, Soret number, Couple stress parameter and chemical reaction parameter.


2016 ◽  
Vol 5 (4) ◽  
Author(s):  
K. Kaladhar ◽  
D. Srinivasacharya

AbstractThe chemical reaction, Soret and Dufour effects on steady flow of a couple stress fluid between two rotating disks are studied. The lower disc is rotating with angular velocity


2021 ◽  
Vol 10 (1) ◽  
pp. 343-362
Author(s):  
Suresha Suraiah Palaiah ◽  
Hussain Basha ◽  
Gudala Janardhana Reddy

Abstract Contemporary investigation studies the silent features of the dissipative free convection couple stress fluid flow over a cylinder under the action of magnetic field, thermal radiation and porous medium with chemical reaction effect. Present two-dimensional viscous incompressible physical model is designed based on the considered flow geometry. Present physical problem gives the highly complicated nonlinear coupled partial differential equations (PDE's) which are not amenable to any of the known techniques. Thus, unconditionally stable, most accurate and speed converging with flexible finite difference implicit technique is utilized to simplify the dimensionless flow field equations. It is apparent from the current results that; the velocity profiles are diminished with enhancing values of magnetic field. Temperature profile increases with enhancing values of thermal radiation parameter. Velocity contours deviates away from the wall with enhancing magnetic parameter. Also, the effects of magnetic field, porous medium, thermal radiation, chemical reaction, buoyancy ratio parameter and Eckert number on couple stress flow velocity, temperature, and concentration profiles are studied. However, the present study has good number of applications in the various fields of engineering such as; polymer processing, solidification of liquid crystals, colloidal solutions, synovial joints, geophysics, chemical engineering, astrophysics and nuclear reactors etc. Finally, the current solutions are validated with the available results in the literature review and found to be in good agreement.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 276 ◽  
Author(s):  
Rahmat Ellahi ◽  
Ahmed Zeeshan ◽  
Farooq Hussain ◽  
A. Asadollahi

The present study gives a remedy for the malign tissues, cells, or clogged arteries of the heart by means of permeating a slim tube (i.e., catheter) in the body. The tiny size gold particles drift in free space of catheters having flexible walls with couple stress fluid. To improve the efficiency of curing and speed up the process, activation energy has been added to the process. The modified Arrhenius function and Buongiorno model, respectively, moderate the inclusion of activation energy and nanoparticles of gold. The effects of chemical reaction and activation energy on peristaltic transport of nanofluids are also taken into account. It is found that the golden particles encapsulate large molecules to transport essential drugs efficiently to the effected part of the organ.


Author(s):  
Kattamreddy Venugopal Reddy ◽  
Machireddy Gnaneswara Reddy ◽  
Oluwole Daniel Makinde

The presented article addresses the electro-osmotic peristaltic flow of a couple stress fluid bounded in an inclined asymmetric micro-channel. The viscous dissipation, Joule heating and chemical reaction effects are employed simultaneously in the flow analysis. Heat and mass transfer have been studied under large wavelength and small Reynolds number. The resulting nonlinear systems are solved numerically. The influence of various dominant physical parameters is discussed for velocity, temperature distribution, concentration distribution and the pumping characteristics. Electro kinetic flow of fluids by micro-pumping through micro channels and micro peristaltic transport has accelerated considerable concern in accelerated medical technology and several areas of biomedical engineering. Deeper clarification of the fluid dynamics of such flow requires the continuous need for more delicate mathematical models and numerical simulations, in parallel with laboratory investigations.


Sign in / Sign up

Export Citation Format

Share Document