Experimental investigation of the heat transfer performance of microchannel heat exchangers with fan-shaped cavities

Author(s):  
Minqiang Pan ◽  
Hongqing Wang ◽  
Yujian Zhong ◽  
Minglong Hu ◽  
Xiaoyu Zhou ◽  
...  
2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


2018 ◽  
Vol 32 (5) ◽  
pp. 411-425 ◽  
Author(s):  
Suvanjan Bhattacharyya ◽  
Ali Cemal Benim ◽  
Himadri Chattopadhyay ◽  
Arnab Banerjee

Author(s):  
F. Sun ◽  
H. Li ◽  
J. Drummond ◽  
G.-X. Wang

Bayonet tubes, simple refluent heat exchangers, are widely used to heat or cool a media when the heating/cooling agent is readily accessible from one side only. Many studies have been conducted to evaluate the heat transfer performance of bayonet tubes. The majority of these studies focus on the heat transfer in the annular section and little on the end surface. This paper presents a numerical simulation of the laminar flow and heat transfer in a bayonet tube. The simulation is first validated by the experimental data in the literature. The flow and heat transfer in bayonet tubes are then investigated with both flat and curved end surfaces. Both local and average Nusselt number on the end surfaces are calculated under various Re and geometry conditions. Effect of the end surface curvature is studied by comparing the performances of the flat and curved ended bayonet tubes.


Sign in / Sign up

Export Citation Format

Share Document