Graphene-mediated near field thermostat based on three-body photon tunneling

Author(s):  
Ming-Jian He ◽  
Hong Qi ◽  
Yang Li ◽  
Ya-Tao Ren ◽  
Wei-Hua Cai ◽  
...  
2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Jinlin Song ◽  
Lu Lu ◽  
Qiang Cheng ◽  
Zixue Luo

We investigate the near-field (NF) radiative heat transfer of the three-body system consisting of anisotropic magnetodielectric hyperbolic metamaterials (AMDHMs), which can support coupled surface phonon polaritons (SPhPs) and hyperbolic modes for both p and s polarizations. We numerically demonstrate that the NF heat transfer between two AMDHMs bodies can be further enhanced by inserting an AMDHMs slab. Due to the loss in AMDHMs, there exists an optimum thickness of the intermediate slab to maximize the NF heat flux flowing to the receiver for a fixed gap distance. Results obtained from this work will facilitate investigations of the NF heat transfer involving magnetic hyperbolic metamaterials.


2005 ◽  
Vol 127 (9) ◽  
pp. 1046-1052 ◽  
Author(s):  
C. J. Fu ◽  
Z. M. Zhang ◽  
D. B. Tanner

The phenomenon of photon tunneling, which depends on evanescent waves for radiative transfer, has important applications in microscale energy conversion devices and near-field optical microscopy. In recent years, there has been a surge of interest in the so-called negative index materials (NIMs), which have simultaneously negative electric permittivity and negative magnetic permeability. The present work investigates photon tunneling in multilayer structures consisting of positive index materials (PIMs) and NIMs. Some features, such as the enhancement of radiative transfer by the excitation of surface polaritons for both polarizations, are observed in the predicted transmittance spectra. The influence of the number of layers on the transmittance is also examined. The results suggest that the enhanced tunneling transmittance by polaritons also depends on the NIM layer thickness and that subdividing the PIM/NIM layers to enhance polariton coupling can reduce the effect of material loss on the tunneling transmittance.


Author(s):  
Chunzhuo Dang ◽  
Xianglei Liu ◽  
Haifeng Xia ◽  
Shizheng Wen ◽  
Qiao Xu

Author(s):  
Ruiyi Liu ◽  
Xiaohu Wu ◽  
Zheng Cui

Abstract The photon tunneling probability is the most important thing in near-field radiative heat transfer (NFRHT). This work study the photon tunneling via coupling graphene plasmons with phonon polaritons in hexagonal boron nitride (hBN). We consider two cases of the optical axis of hBN along z-axis and x-axis, respectively. We investigate the NFRHT between graphene-covered bulk hBN, and compare it with that of bare bulk hBN. Our results show that in Reststrahlen bands, the coupling of graphene plasmons and phonon polaritons in hBN can either suppress or enhance the photon tunneling probability, depending on the chemical potential of graphene and frequency. This conclusion holds when the optiacal axis of hBN is either along z-axis or x-axis. The findings in this work not only deepen our understanding of coupling mechanism between graphene plasmons with phonon polaritons, but also provide a theoretical basis for controlling photon tunneling in graphene covered hyperbolic materials.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
B. Zhao ◽  
Z. M. Zhang

Enhancing photon tunneling probability is the key to increasing the near-field radiative heat transfer between two objects. It has been shown that hexagonal boron nitride (hBN) and graphene heterostructures can enable plentiful phononic and plasmonic resonance modes. This work demonstrates that heterostructures consisting of a monolayer graphene on an hBN film can support surface plasmon–phonon polaritons that greatly enhance the photon tunneling and outperform individual structures made of either graphene or hBN. Both the thickness of the hBN films and the chemical potential of graphene can affect the tunneling probability, offering potential routes toward passive or active control of near-field heat transfer. The results presented here may facilitate the system design for near-field energy harvesting, thermal imaging, and radiative cooling applications based on two-dimensional materials.


1995 ◽  
Vol 66 (24) ◽  
pp. 3269-3271 ◽  
Author(s):  
Herschel M. Marchman ◽  
Anthony E. Novembre

Sign in / Sign up

Export Citation Format

Share Document