Nucleation and bubble evolution in subcooled liquid under pulse heating

Author(s):  
Anton Surtaev ◽  
Vladimir Serdyukov ◽  
Ivan Malakhov ◽  
Alexey Safarov
2001 ◽  
Vol 32 (4-6) ◽  
pp. 8
Author(s):  
E. A. Tairov ◽  
B. G. Pokusaev ◽  
D. A. Kazenin ◽  
S. A. Chizhikov ◽  
L. V. Syskov

2018 ◽  
Author(s):  
S.C. Wu ◽  
Xiangdong Liu ◽  
Chengbin Zhang ◽  
Yongping Chen

2020 ◽  
Vol 1652 ◽  
pp. 012019
Author(s):  
T C Le ◽  
V I Melikhov ◽  
O I Melikhov ◽  
S E Yakush

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3727
Author(s):  
Huanhuan He ◽  
Zhiwei Lin ◽  
Shengming Jiang ◽  
Xiaotian Hu ◽  
Jian Zhang ◽  
...  

The FeCoNiCrTi0.2 high-entropy alloys fabricated by vacuum arc melting method, and the annealed pristine material, are face centered cubic structures with coherent γ’ precipitation. Samples were irradiated with 50 keV He+ ions to a fluence of 2 × 1016 ions/cm2 at 723 K, and an in situ annealing experiment was carried out to monitor the evolution of helium bubbles during heating to 823 and 923 K. The pristine structure of FeCoNiCrTi0.2 samples and the evolution of helium bubbles during in situ annealing were both characterized by transmission electron microscopy. The annealing temperature and annealing time affect the process of helium bubbles evolution and formation. Meanwhile, the grain boundaries act as sinks to accumulate helium bubbles. However, the precipitation phase seems have few effects on the helium bubble evolution, which may be due to the coherent interface and same structure of γ’ precipitation and matrix.


Sign in / Sign up

Export Citation Format

Share Document