scholarly journals Impact effects due to hot vapour bubble collapse in subcooled liquid

2020 ◽  
Vol 1652 ◽  
pp. 012019
Author(s):  
T C Le ◽  
V I Melikhov ◽  
O I Melikhov ◽  
S E Yakush
2008 ◽  
Vol 601 ◽  
pp. 253-279 ◽  
Author(s):  
BINZE YANG ◽  
ANDREA PROSPERETTI

The motion of a vapour bubble in a subcooled liquid is studied numerically assuming axial symmetry but allowing the surface to deform under the action of the fluid dynamic stress. The flattening of the bubble in the plane orthogonal to the translational velocity increases the added mass and slows it down, while, at the same time, the decreasing volume tends to increase the velocity. The deformation of the interface also increases the surface area exposed to the incoming cooler liquid. The competition among these opposing processes is subtle and the details of the condensation cannot be captured by simpler models, two of which are considered. In spite of these differences, the estimate of the total collapse time given by a spherical model is close to that of the deforming bubble model for the cases studied. In addition to an isothermal liquid, some examples in which the bubble encounters warmer and colder liquid regions are shown.


1974 ◽  
Vol 29 (2) ◽  
pp. 363-371 ◽  
Author(s):  
S.J. Board ◽  
A.D. Kimpton

1968 ◽  
Vol 90 (1) ◽  
pp. 22-26 ◽  
Author(s):  
H. C. Hewitt ◽  
J. D. Parker

Experimental data on bubble growth in superheated liquid nitrogen, bubble collapse in subcooled liquid nitrogen, and bubble growth with decreasing liquid nitrogen pressure are compared to the theoretical solutions obtained for noncryogens. Vapor bubbles in liquid nitrogen were found to behave quite similarly to vapor bubbles in noncryogens. This paper provides experimental data in two areas where additional theoretical work is needed: Bubble collapse in subcooled liquid, and bubble growth with decreasing pressure.


1977 ◽  
Vol 32 (7) ◽  
pp. 723-727 ◽  
Author(s):  
H. Delmas ◽  
H. Angelino

2014 ◽  
Vol 76 ◽  
pp. 01040
Author(s):  
Evgenija Orlova ◽  
Geniy Kuznetsova ◽  
Dmitriy Feoktistovb

2001 ◽  
Vol 32 (4-6) ◽  
pp. 8
Author(s):  
E. A. Tairov ◽  
B. G. Pokusaev ◽  
D. A. Kazenin ◽  
S. A. Chizhikov ◽  
L. V. Syskov

Sign in / Sign up

Export Citation Format

Share Document