helium bubble
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 58)

H-INDEX

24
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5393
Author(s):  
Caitlin A. Taylor ◽  
Eric Lang ◽  
Paul G. Kotula ◽  
Ronald Goeke ◽  
Clark S. Snow ◽  
...  

Helium is insoluble in most metals and precipitates out to form nanoscale bubbles when the concentration is greater than 1 at.%, which can alter the material properties. Introducing controlled defects such as multilayer interfaces may offer some level of helium bubble management. This study investigates the effects of multilayered composites on helium behavior in ion-implanted, multilayered ErD2/Mo thin film composites. Following in-situ and ex-situ helium implantation, scanning and transmission electron microscopy showed the development of spherical helium bubbles within the matrix, but primarily at the layer interfaces. Bubble linkage and surface blistering is observed after high fluence ex-situ helium implantation. These results show the ability of metallic multilayers to alter helium bubble distributions even in the presence of a hydride layer, increasing the lifetime of materials in helium environments.


Author(s):  
Vladimir Krsjak ◽  
Tielong Shen ◽  
Jarmila Degmova ◽  
Stanislav Sojak ◽  
Erik Korpas ◽  
...  

Author(s):  
Jingwen Ba ◽  
Rongguang Zeng ◽  
Xiayan Yan ◽  
Rui Li ◽  
Wenqing Wu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3727
Author(s):  
Huanhuan He ◽  
Zhiwei Lin ◽  
Shengming Jiang ◽  
Xiaotian Hu ◽  
Jian Zhang ◽  
...  

The FeCoNiCrTi0.2 high-entropy alloys fabricated by vacuum arc melting method, and the annealed pristine material, are face centered cubic structures with coherent γ’ precipitation. Samples were irradiated with 50 keV He+ ions to a fluence of 2 × 1016 ions/cm2 at 723 K, and an in situ annealing experiment was carried out to monitor the evolution of helium bubbles during heating to 823 and 923 K. The pristine structure of FeCoNiCrTi0.2 samples and the evolution of helium bubbles during in situ annealing were both characterized by transmission electron microscopy. The annealing temperature and annealing time affect the process of helium bubbles evolution and formation. Meanwhile, the grain boundaries act as sinks to accumulate helium bubbles. However, the precipitation phase seems have few effects on the helium bubble evolution, which may be due to the coherent interface and same structure of γ’ precipitation and matrix.


Sign in / Sign up

Export Citation Format

Share Document