Gas-surface interaction effects on rarefied gas flows around microbeams induced by temperature fields

Author(s):  
Xiaowei Wang ◽  
Wenqing Zhang ◽  
Tianyi Su ◽  
Zhijun Zhang ◽  
Shiwei Zhang
Author(s):  
Deepak Nabapure ◽  
Ram Chandra Murthy

Abstract The present study investigates the flow behavior of the rarefied gas over a wall-mounted cube. The problem is studied for different cube heights (h) of 9mm and 18mm in the slip and transition regimes. The Direct Simulation Monte Carlo (DSMC) method is employed to evaluate the properties such as velocity, pressure and temperature fields. The Reynolds number (Re) ranges from 403 to 807, and the Knudsen number (Kn) is in the range from 0.05 to 0.103. A typical shock wave is formed in front of the cube. The recirculation length of the vortices normalized with respect to the respective cube heights for Kn = 0.05 and Kn = 0.103 are about 1.11 and 1.95 respectively. Similarly, the center of the vortices is located at about 3.33 and 6.11 times the respective cube heights upstream, for Kn = 0.05 and Kn = 0.103. The local temperature and pressure variations observed upstream of the cube are two orders higher in magnitude and are primarily attributed to strong compressibility effects. The present study paves the way for benchmarking, and forms a basis for understanding the rarefied gas flows over complex geometries.


1988 ◽  
Vol 55 (5) ◽  
pp. 1209-1213
Author(s):  
S. N. Syromyatnikov ◽  
S. T. Barashkin ◽  
B. T. Porodnov

2021 ◽  
Vol 33 (5) ◽  
pp. 052006
Author(s):  
Hassan Akhlaghi ◽  
Ehsan Roohi ◽  
Abbas Daliri ◽  
Mohammad-Reza Soltani

2001 ◽  
Vol 19 (5) ◽  
pp. 563-569 ◽  
Author(s):  
J. Gumbel

Abstract. Meshes are commonly used as part of instruments for in situ atmospheric measurements. This study analyses the aerodynamic effect of meshes by means of wind tunnel experiments and numerical simulations. Based on the Direct Simulation Monte Carlo method, a simple mesh parameterisation is described and applied to a number of representative flow conditions. For open meshes freely exposed to the flow, substantial compression effects are found both upstream and downstream of the mesh. Meshes attached to close instrument structures, on the other hand, cause only minor flow disturbances. In an accompanying paper, the approach developed here is applied to the quantitative analysis of rocket-borne density measurements in the middle atmosphere.Key words. Atmospheric composition and structure (instruments and techniques; middle atmosphere – composition and chemistry)


2010 ◽  
Vol 39 (10) ◽  
pp. 2078-2089 ◽  
Author(s):  
T.J. Scanlon ◽  
E. Roohi ◽  
C. White ◽  
M. Darbandi ◽  
J.M. Reese

Sign in / Sign up

Export Citation Format

Share Document