Turbulent flow structure and heat transfer mechanisms over surface vortex structures of micro V-shaped ribs and dimples

Author(s):  
Peng Zhang ◽  
Yu Rao ◽  
Yin Xie ◽  
Meihong Zhang
2017 ◽  
Vol 52 (1) ◽  
pp. 115-127 ◽  
Author(s):  
A. E. Gorelikova ◽  
O. N. Kashinskii ◽  
M. A. Pakhomov ◽  
V. V. Randin ◽  
V. I. Terekhov ◽  
...  

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Peng Zhang ◽  
Yu Rao ◽  
Yanlin Li ◽  
Bernhard Weigand

An experimental and numerical study has been conducted on heat transfer and turbulent flow structure in channels with novel hybrid structures with miniature V-shaped ribs and dimples on one wall. One miniature V-shaped rib was arranged immediately upstream each individual dimple to form the hybrid structure, which aims at inducing additional near-wall secondary flow interacting with the dimple vortex flow and further improving the heat transfer. Steady-state convective heat transfer experiments were done to obtain the heat transfer and pressure loss of the turbulent flow over the surfaces with the miniature V rib-dimples for the Reynolds numbers from 18,700 to 60,000. In addition, the turbulent flow structure in the V rib-dimpled channels has been predicted by carrying out numerical computations. The experimental results indicated that the overall heat transfer enhancement of the miniature V rib-dimpled channels can be increased by up to about 60.0% compared with the counterpart of the dimpled only channel, and by about 23.0% compared with the counterpart of the miniature V ribbed only channel. The miniature V ribs showed appreciable effects on the heat transfer and pressure loss characteristics for the turbulent flow over the V rib-dimpled surfaces. The numerical computations showed that the miniature V rib upstream each dimple produced strong near-wall downwashing secondary flow, which significantly changed the flow patterns and intensified the turbulent flow mixing inside and outside the dimple and above the surrounding wall. These unique near-wall flow characteristics generated a significant heat transfer improvement in both the magnitude and the uniformity.


2016 ◽  
Vol 12 ◽  
pp. 130-147 ◽  
Author(s):  
Saiyu Yuan ◽  
Hongwu Tang ◽  
Yang Xiao ◽  
Xuehan Qiu ◽  
Huiming Zhang ◽  
...  

2017 ◽  
Vol 122 (6) ◽  
pp. 1278-1293 ◽  
Author(s):  
Alexander N. Sukhodolov ◽  
Julian Krick ◽  
Tatiana A. Sukhodolova ◽  
Zhengyang Cheng ◽  
Bruce L. Rhoads ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document