scholarly journals Heat transfer enhancement in mini channel heat sinks utilizing corona wind: A numerical study

Author(s):  
Amir Saadatmand ◽  
Mohammad Goharkhah ◽  
Alireza Mahdavi Nejad
2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2965-2976 ◽  
Author(s):  
Muhammad Anwar ◽  
Hussain Tariq ◽  
Ahmad Shoukat ◽  
Hafiz Ali ◽  
Hassan Ali

Water cooled heat sinks are becoming popular due to increased heat generation inside the microprocessor. Timely heat removal from microprocessor is the key factor for better performance and long life. Heat transfer enhancement is reached either by increasing the surface area density and/or by altering the base fluid properties. Nanoparticles emerge as a strong candidate to increase the thermal conductivity of base fluids. In this research, the thermal performance of mini-channel heat sinks for different fin spacing (0.2 mm, 0.5 mm, 1 mm, and 1.5 mm) was investigated numerically using CuO-water nanofluids with volumetric concentration of 1.5%. The numerical values computed were than compared with the literature and a close agreement is achieved. We recorded the minimum base temperature of chip to be 36.8?C for 0.2 mm fin spacing heat sink. A reduction of 9.1% in base temperature was noticed using CuO-water nanofluids for 0.2 mm fin spacing as compared to previously experimental estimated value using water [1]. The drop percentage difference in pressure between water and CuO-water nanofluids was 2.2-13.1% for various fin spacing heat sinks. The percentage difference in thermal resistance between water and CuO-water nanofluids was computed 12.1% at maximum flow rate. We also observed uniform temperature distribution for all heat sinks.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Sign in / Sign up

Export Citation Format

Share Document