Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement

2013 ◽  
Vol 56 (1-2) ◽  
pp. 561-573 ◽  
Author(s):  
Hamid Reza Seyf ◽  
Zhou Zhou ◽  
H.B. Ma ◽  
Yuwen Zhang
Author(s):  
Laura Small ◽  
Fatemeh Hassanipour

This study presents numerical simulations of forced convection with parachute-shaped encapsulated phase-change material particles in water, flowing through a square cross-section duct with top and bottom iso-flux surfaces. The system is inspired by the gas exchange process in the alveolar capillaries between the red blood cells (RBC) and the lung tissue. The numerical model was developed for the motion of elongated encapsulated phase change particles along a channel in a particulate flow where particle diameters are comparable with the channel height. Results of the heat transfer enhancement for the parachute-shaped particles are compared with the circular particles. Results reveal that the key role in heat transfer enhancement is the snugness movement of the particles and the parachute-shaped geometry yields small changes in heat transfer coefficient when compared to the circular ones. The effects of various parameters including particle diameter and volume-fraction, as well as fluid speed, on the heat transfer coefficient is investigated and reported in this paper.


2021 ◽  
pp. 345-345
Author(s):  
Kumar Varun ◽  
G. Manikandan ◽  
Kanna Rajesh ◽  
Venkata Poluru

Heat transfer enhancement in Solar Air Heater (SAH) has been investigated by implementing rough surfaces in the absorber plate. We use paraffin wax is used as Phase Change Material (PCM) integrated with SAH as a Thermal Energy Storage (TES) system. A maximum convective heat transfer is attained during the daytime and retained as latent heat (LH) to discharge heat during OFF radiation. In this investigation, two types of absorber plates were employed such as flat & polygonal-shaped ribs at the test section. Further to investigate the heat transfer enhancement, the research was conducted with and without PCM. The study was carried out at the mass flow rates of 0.062 kg/s, 0.028 kg/s, and 0.01 kg/s to ascertain the enhancement of thermal efficiency and heat discharge duration. The temperatures of absorber plate Tp, ambient Tamb, outlet Tout and PCM along with Solar Intensity I (W/m-2) were taken as the main parameters. The research reveals that the absorber plate with polygonal ribs tested with PCM yields a higher temperature of 77?C with a mass flow rate of 0.062 kg/s during peak radiation. And discharged heat energy from PCM to absorber plate for 3.5 hours with a maximum temperature of 7.1?C.


Sign in / Sign up

Export Citation Format

Share Document