scholarly journals A novel solution for inverse heat conduction problem in one-dimensional medium with moving boundary and temperature-dependent material properties

Author(s):  
Obinna Uyanna ◽  
Hamidreza Najafi
1999 ◽  
Vol 121 (3) ◽  
pp. 708-711 ◽  
Author(s):  
V. Petrushevsky ◽  
S. Cohen

A one-dimensional, nonlinear inverse heat conduction problem with surface ablation is considered. In-depth temperature measurements are used to restore the heat flux and the surface recession history. The presented method elaborates a whole domain, parameter estimation approach with the heat flux approximated by Fourier series. Two versions of the method are proposed: with a constant order and with a variable order of the Fourier series. The surface recession is found by a direct heat transfer solution under the estimated heat flux.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3313
Author(s):  
Sun Kyoung Kim

This work examines the effects of the known boundary conditions on the accuracy of the solution in one-dimensional inverse heat conduction problems. The failures in many applications of these problems are attributed to inaccuracy of the specified constants and boundary conditions. Since the boundary conditions and material properties in most thermal problems are imposed with uncertainty, the effects of their inaccuracy should be understood prior to the inverse analyses. The deviation from the exact solution has been examined for each case according to the errors in material properties, boundary location, and known boundary conditions. The results show that the effects of such errors are dramatic. Based on these results, the applicability and limitations of the inverse heat conduction analyses have been evaluated and discussed.


2008 ◽  
Vol 131 (2) ◽  
Author(s):  
Chunli Fan ◽  
Fengrui Sun ◽  
Li Yang

A two-dimensional inverse heat conduction problem to determine the interfacial configuration of a multiple region domain is solved by utilizing temperature readings on the outer surface of the whole domain. The method used is the modified one-dimensional correction method (MODCM) along with the finite element method. The MODCM is a simple but very accurate method, which first solves the multidimensional inverse heat conduction problem based on the simplified one-dimensional model, and the discrepancy in the result caused by this one-dimensional simplification is corrected afterward by an iterative process. A series of numerical experiments is conducted in order to verify the effectiveness of the algorithm. The method can identify the interfacial configuration of the multiple region domain with high accuracy. The average relative error of the identification result is not more than 10.4% when the standard deviation of the temperature measurement is less than 2.0% of the average measured temperature for the cases tested. The number of the measurement points of the inspection surface can be reduced with no obvious effect on the estimation results as long as it is still sufficient to describe the exact interfacial configuration. The method is proved to be a simple, fast, and accurate one that can solve successfully this interfacial configuration identification problem.


Sign in / Sign up

Export Citation Format

Share Document