Nonlinear Inverse Heat Conduction With a Moving Boundary: Heat Flux and Surface Recession Estimation

1999 ◽  
Vol 121 (3) ◽  
pp. 708-711 ◽  
Author(s):  
V. Petrushevsky ◽  
S. Cohen

A one-dimensional, nonlinear inverse heat conduction problem with surface ablation is considered. In-depth temperature measurements are used to restore the heat flux and the surface recession history. The presented method elaborates a whole domain, parameter estimation approach with the heat flux approximated by Fourier series. Two versions of the method are proposed: with a constant order and with a variable order of the Fourier series. The surface recession is found by a direct heat transfer solution under the estimated heat flux.

Author(s):  
Jonathan W. Woolley ◽  
Keith A. Woodbury

The estimation of the heat flux at the interface between a solidifying metal casting and mold is a frequently investigated topic. Accurate knowledge of the interfacial heat transfer can be used in solidification simulation to reduce the time and cost of the casting design process. A common and well-established approach to estimating the interfacial heat flux is the solution of the inverse heat conduction problem. Temperature measurements from thermocouples imbedded in the sand mold are used as inputs to the inverse solver. It is well-documented that imbedded thermocouples which are subjected to high temperature gradients will yield biased temperature measurements. By accounting for the sensor dynamics with an appropriate model, the measured temperatures can be corrected to mitigate the effect of the bias error in the estimation of the heat flux. In a previous work, experimentally measured temperatures were obtained from aluminum sand castings and the interfacial heat transfer was evaluated. In other works, the temperature measurement error was demonstrated and the kernel method for correcting measured temperatures was demonstrated with a numerical experiment. In this paper, the simulation of the response of a thermocouple with a three-dimensional computational model is used with the kernel method to correct the experimentally measured temperatures. The previous interfacial heat flux estimates are updated by solving the inverse heat conduction problem with the corrected temperatures as the inputs.


Author(s):  
Rakesh Kumar ◽  
Jayesh. P ◽  
Niranjan Sahoo

A procedure to solve inverse heat conduction problem (IHCP) is to derive surface heat flux and temperature from temperature change inside a solid. The method proves to be very useful and powerful when a direct measurement of surface heat flux and temperature is difficult, owing to several working condition. The literature reviewed here discussion one dimensional inverse heat conduction problem. Procedure, criteria, methods and important results of other investigation are briefly discussed.


2013 ◽  
Vol 21 (5) ◽  
pp. 854-864 ◽  
Author(s):  
Jean-Laurent Gardarein ◽  
Jonathan Gaspar ◽  
Yann Corre ◽  
Stephane Devaux ◽  
Fabrice Rigollet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document