Effects of the incident angle of branch pipe on the thermal mixing of impinging jets in T-junctions

Author(s):  
Zezhao Nan ◽  
Mingzhou Gu ◽  
Yaru Li ◽  
Keyuan Zhang ◽  
Naihua Wang
Author(s):  
Zezhao Nan ◽  
Xianqiao Zhao ◽  
Yaru Li ◽  
Keyuan Zhang ◽  
Naihua Wang

Author(s):  
Masaaki Tanaka ◽  
Satoshi Murakami ◽  
Yasuhiro Miyake ◽  
Hiroyuki Ohshima

Thermal striping phenomenon caused by mixing of fluids at different temperatures is one of the most important issues in design of fast breeder reactors (FBRs), because it may cause high-cycle thermal fatigue in structure. Authors have been developed a numerical simulation code MUGTHES to investigate thermal striping phenomena in FBRs and to give transient data of temperature in the fluid and the structure for an evaluation method of the high-cycle thermal fatigue problem. MUGTHES employs the boundary fitted coordinate (BFC) system and deals with three-dimensional transient thermal-hydraulic problems by using the large eddy simulation (LES) approach and artificial wall conditions derived by a wall function law. In this paper, numerical simulations of MUGTHES in T-junction piping system appear. Boundary conditions for the simulations are chosen from an existing water experiment in JAEA, named as WATLON experiment. The wall jet condition in which the branch pipe jet flows away touching main pipe wall on the branch pipe side and the impinging jet condition in which the branch pipe jet impinges on the wall surface on the opposite side of the branch pipe are selected, because significant temperature fluctuation may be induced on the wall surfaces by the branch pipe jet behavior. Numerical results by MUGTHES are validated by comparisons with measured velocity and temperature profiles. Three dimensional large-scale eddies are identified behind of the branch pipe jet in the wall jet case and in front of the branch pipe jet in the impinging jet case, respectively. Through these numerical simulations in the T-pipe, generation mechanism of temperature fluctuation in thermal mixing process is revealed in the relation with the large-scale eddy motion.


Author(s):  
S. Kimoto ◽  
H. Hashimoto ◽  
S. Takashima ◽  
R. M. Stern ◽  
T. Ichinokawa

The most well known application of the scanning microscope to the crystals is known as Coates pattern. The contrast of this image depends on the variation of the incident angle of the beam to the crystal surface. The defect in the crystal surface causes to make contrast in normal scanning image with constant incident angle. The intensity variation of the backscattered electrons in the scanning microscopy was calculated for the defect in the crystals by Clarke and Howie. Clarke also observed the defect using a scanning microscope.This paper reports the observation of lattice defects appears in thin crystals through backscattered, secondary and transmitted electron image. As a backscattered electron detector, a p-n junction detector of 0.9 π solid angle has been prepared for JSM-50A. The gain of the detector itself is 1.2 x 104 at 50 kV and the gain of additional AC amplifier using band width 100 Hz ∼ 10 kHz is 106.


Author(s):  
Scott Lordi

Vicinal Si (001) surfaces are interesting because they are good substrates for the growth of III-V semiconductors. Spots in RHEED patterns from vicinal surfaces are split due to scattering from ordered step arrays and this splitting can be used to determine the misorientation angle, using kinematic arguments. Kinematic theory is generally regarded to be inadequate for the calculation of RHEED intensities; however, only a few dynamical RHEED simulations have been attempted for vicinal surfaces. The multislice formulation of Cowley and Moodie with a recently developed edge patching method was used to calculate RHEED patterns from vicinal Si (001) surfaces. The calculated patterns are qualitatively similar to published experimental results and the positions of the split spots quantitatively agree with kinematic calculations.RHEED patterns were calculated for unreconstructed (bulk terminated) Si (001) surfaces misoriented towards [110] ,with an energy of 15 keV, at an incident angle of 36.63 mrad ([004] bragg condition), and a beam azimuth of [110] (perpendicular to the step edges) and the incident beam pointed down the step staircase.


1999 ◽  
Vol 9 (3) ◽  
pp. 277-289 ◽  
Author(s):  
Wei-Hsiang Lai ◽  
Wennon Huang ◽  
Tsung-Leo Jiang
Keyword(s):  

1995 ◽  
Vol 5 (4-5) ◽  
pp. 387-402 ◽  
Author(s):  
B. S. Kang ◽  
Y. B. Shen ◽  
D. Poulikakos
Keyword(s):  

2016 ◽  
Vol 47 (4) ◽  
pp. 359-382 ◽  
Author(s):  
Nabil Kharoua ◽  
Lyes Khezzar ◽  
Zoubir Nemouchi

Sign in / Sign up

Export Citation Format

Share Document