backscattered electron
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 81)

H-INDEX

40
(FIVE YEARS 4)

2022 ◽  
Vol 34 (1) ◽  
pp. 7-18
Author(s):  
Gerhard Franz ◽  
Masafumi Sudo ◽  
Vladimir Khomenko

Abstract. We determined 40Ar/39Ar ages of buddingtonite, occurring together with muscovite, with the laser-ablation method. This is the first attempt to date the NH4-feldspar buddingtonite, which is typical for sedimentary–diagenetic environments of sediments, rich in organic matter, or in hydrothermal environments, associated with volcanic geyser systems. The sample is a hydrothermal breccia, coming from the Paleoproterozoic pegmatite field of the Korosten Plutonic Complex, Volyn, Ukraine. A detailed characterization by optical methods, electron microprobe analyses, backscattered electron imaging, and IR analyses showed that the buddingtonite consists of euhedral-appearing platy crystals of tens of micrometers wide, 100 or more micrometers in length, which consist of fine-grained fibers of ≤ 1 µm thickness. The crystals are sector and growth zoned in terms of K–NH4–H3O content. The content of K allows for an age determination with the 40Ar/39Ar method, as well as in the accompanying muscovite, intimately intergrown with the buddingtonite. The determinations on muscovite yielded an age of 1491 ± 9 Ma, interpreted as the hydrothermal event forming the breccia. However, buddingtonite apparent ages yielded a range of 563 ± 14 Ma down to 383 ± 12 Ma, which are interpreted as reset ages due to Ar loss of the fibrous buddingtonite crystals during later heating. We conclude that buddingtonite is suited for 40Ar/39Ar age determinations as a supplementary method, together with other methods and minerals; however, it requires a detailed mineralogical characterization, and the ages will likely represent minimum ages.


2021 ◽  
Vol 12 (1) ◽  
pp. 271
Author(s):  
Luigi Generali ◽  
Francesco Cavani ◽  
Federico Franceschetti ◽  
Paolo Sassatelli ◽  
Luciano Giardino ◽  
...  

This study compares conventional endodontic needle irrigation, passive ultrasonic irrigation, apical negative pressure irrigation, and mechanical activation to remove calcium hydroxide from single straight root canals. Eighty-four mandibular premolars were prepared in a crown-down manner up to size #40. Two teeth represented a negative control, and another two served as a positive control. Calcium hydroxide paste was placed inside root canals. The remaining eighty samples were analyzed based on the activation techniques, and the cleanliness of the canals was quantified using Fiji’s software on 500× magnified SEM backscattered electron micrographs. Considering the whole canal, all instruments showed better performance than conventional endodontic needle irrigation in removing calcium hydroxide (p < 0.05). Irrisafe and XP-endo Finisher could remove a significantly higher amount of calcium hydroxide than Endovac (p < 0.05). Irrisafe and XP-endo Finisher have been able to remove more calcium hydroxide than EndoVac.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7743
Author(s):  
Sijia Liu ◽  
Long Yu ◽  
Hao Han ◽  
Feng Pan ◽  
Kai Wu ◽  
...  

This study evaluates the effect of vehicle–bridge coupled vibration on the mechanical properties of fiber-reinforced magnesium phosphate cement (FR-MPC) composites and the bonding properties of repaired systems. By means of compressive and flexural bond strengths, fiber pullout, mercury intrusion porosimeter (MIP) and backscattered electron imaging (BSE) analysis, an enhanced insight was gained into the evolution of FR-MPC performance before and after vibration. Experimental results showed that the compressive strength and flexural strength of FR-MPC was increased when it was subjected to vibration. However, the effects of vibration on the flexural strength of plain magnesium phosphate cement (MPC) mortars was insignificant. The increased flexural strength of FR-MPC after vibration could be due to the high average bond strength and pull-out energy between the micro-steel fiber and the MPC matrix. Moreover, BSE analysis revealed that the interface structure between FR-MPC and an ordinary Portland cement (OPC) substrate was more compacted after vibration, which could possibly be responsible for the better bonding properties of FR-MPC. These findings are beneficial for construction project applications of FR-MPC in bridge repairing and widening.


2021 ◽  
Vol 2 (5) ◽  
pp. 34-40
Author(s):  
I. Y. Tanko ◽  
K. Dzigbodi-Adjimah

Investigation of the pegmatites of Keffi area was carried out in reflected light microscopy to determine the texture, elemental composition, and the semi-quantitative analysis of the ore minerals from the three groups of pegmatites identified in Keffi area: the non-mineralised, the intermediate and the mineralised pegmatites. Backscattered Electron (BSE) images and Wavelength Dispersive Spectrometry (WDS) were used. Petrographically the portion which is characterised by profuse albitisation, sericitisation and silicification is also associated with the development of cleavelandite, lepidolite, coloured tourmaline and high concentrations of cassiterite and columbite-tantalite (coltan).The order of crystallisation in the pegmatites is from microcline to quartz followed by (plagioclases) oligoclase to albite and by mica (from biotite to muscovite) then by accessory minerals such as black tourmaline, garnet, beryl and lastly oxides of Sn-Nb-Ta. Sphene, rutile, zircon, apatite, ilmenite, and magnetite appeared to be earliest minerals whilst garnet pyrite and chalcopyrite may be syn-metamorphic. Beryl and coloured tourmaline appear to be of hydrothermal phase.


2021 ◽  
Author(s):  
Dereje Ayalew ◽  
David Pyle ◽  
David Ferguson

We report field observation, textural description (thin section and scanning electron microscope (SEM)) and mineral chemistry (backscattered electron imaging and dispersive X-ray analysis) for rhyolitic obsidian lavas from previously under described effusive Badi volcano, central Afar within the Ethiopian rift. These rhyolitic obsidian lavas are compositionally homogeneous and contain well developed flow bands. Textural analysis is undertaken to understand the formation of flow band, and to draw inferences on the mechanism of emplacement of this silicic volcano. Flow band arises from variable vesicularity (i.e., alternating domains of vesicular, light glass and non-vesicular, brown glass). Such textural heterogeneities have been developed during distinct cooling and degassing of the melt in the conduit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandra Tits ◽  
Erwan Plougonven ◽  
Stéphane Blouin ◽  
Markus A. Hartmann ◽  
Jean-François Kaux ◽  
...  

AbstractThe enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 767
Author(s):  
Sytle M. Antao

Two isotropic grossular (ideally Ca3Al2Si3O12) samples from (1) Canada and (2) Tanzania, three optically anisotropic grossular samples (3, 4, 5) from Mexico, and one (6) anisotropic sample from Italy were studied. The crystal structure of the six samples was refined in the cubic space group Ia3¯d, using monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and the Rietveld method. The compositions of the samples were obtained from electron microprobe analyses (EPMA). The HRPXRD traces show a single cubic phase for two isotropic samples, whereas the four anisotropic samples contain two different cubic phases that were also resolved using X-ray elemental line scans, backscattered electron (BSE) images, and elemental maps. Structural mismatch from two cubic phases intergrown in the birefringent samples gives rise to strain-induced optical anisotropy. Considering the garnet general formula, [8]X3[6]Y2[4]Z3[4]O12, the results of this study show that with increasing unit-cell parameter, the Y-O distance increases linearly and rather steeply, the average <X-O> distance increases just slightly in response to substitution mainly on the Y site, while the Z-O distance remains nearly constant. The X and Z sites in grossular contain Ca and Si atoms, respectively; both sites show insignificant substitutions by other atoms, which is supported by a constant Z-O distance and only a slight increase in the average <X-O> distance. The main cation exchange is realized in the Y site, where Fe3+ (ionic radius = 0.645 Å) replaces Al3+ (ionic radius = 0.545 Å), so the Y-O distance increases the most.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 763
Author(s):  
Georgia Pe-Piper ◽  
David J. W. Piper ◽  
Nicolina Bourli ◽  
Avraam Zelilidis

Chert concretions in thick limestone successions preserve a more complete paragenetic sequence of diagenetic minerals than their host limestone and interbedded shale. The goal of this study was to test the possible presence of a high-temperature mineralising system in the Ionian basin of western Greece. Upper Cretaceous chert nodules were sampled at Araxos, where rocks are highly faulted and uplifted by salt diapirism, and on Kastos Island, on the flanks of a regional anticline. Chert concretions have microporosity produced by recrystallisation of opal to quartz and fractures produced in the brittle chert during basin inversion. Diagenetic mineral textures were interpreted from backscattered electron images, and minerals were identified from their chemistry. Diagenetic minerals in pores and veins include sedimentary apatite (francolite), dolomite, Fe-chlorite, Fe oxide-hydroxide mixtures, sphalerite, barite and calcite. Sphalerite is restricted to Araxos, suggesting that inferred basinal fluids were hotter and more saline than at Kastos. At Araxos, the Fe oxide-hydroxide also includes minor Cu, Zn, and Ni. Whether the transported metals were derived from sub-salt clastic rocks and basement, or from enriched Mesozoic black shales, is unclear. The effectiveness of this novel approach to understanding fluid flow history in thick limestone successions is validated.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 732
Author(s):  
Karol Alí Apaza Alccayhuaman ◽  
Stefan Tangl ◽  
Stéphane Blouin ◽  
Markus A. Hartmann ◽  
Patrick Heimel ◽  
...  

Volume-stable collagen matrices (VSCM) are conductive for the connective tissue upon soft tissue augmentation. Considering that collagen has osteoconductive properties, we have investigated the possibility that the VSCM also consolidates with the newly formed bone. To this end, we covered nine rat calvaria circular defects with a VSCM. After four weeks, histology, histomorphometry, quantitative backscattered electron imaging, and microcomputed tomography were performed. We report that the overall pattern of mineralization inside the VSCM was heterogeneous. Histology revealed, apart from the characteristic woven bone formation, areas of round-shaped hypertrophic chondrocyte-like cells surrounded by a mineralized extracellular matrix. Quantitative backscattered electron imaging confirmed the heterogenous mineralization occurring within the VSCM. Histomorphometry found new bone to be 0.7 mm2 (0.01 min; 2.4 max), similar to the chondrogenic mineralized extracellular matrix with 0.7 mm2 (0.0 min; 4.2 max). Microcomputed tomography showed the overall mineralized tissue in the defect to be 1.6 mm3 (min 0.0; max 13.3). These findings suggest that in a rat cranial defect, VSCM has a limited and heterogeneous capacity to support intramembranous bone formation but may allow the formation of bone via the endochondral route.


Sign in / Sign up

Export Citation Format

Share Document