A simulation study of the steam reforming of methane in a dense tubular membrane reactor

2004 ◽  
Vol 29 (6) ◽  
pp. 611-617 ◽  
Author(s):  
F Gallucci
1995 ◽  
Vol 25 (3-4) ◽  
pp. 303-307 ◽  
Author(s):  
S. Lægsgaard Jørgensen ◽  
P.E.Højlund Nielsen ◽  
P. Lehrmann

2005 ◽  
Vol 44 (5) ◽  
pp. 1454-1465 ◽  
Author(s):  
Jianhua Tong ◽  
Yasuyuki Matsumura ◽  
Hiroyuki Suda ◽  
Kenji Haraya

Author(s):  
Lemnouer Chibane

Steam reforming of methanol over Cu/ZnO/Al2O3 catalyst was theoretically studied under created unsteady state. A mathematical approach was proposed to evaluate the effect of periodic inputs on reactor performance. The efficacy of the periodic separating reactor in term of pure hydrogen and of methanol conversion was measured during the reaction of methanol steam reforming. The obtained results showed that under certain operating conditions the periodic operation can be used advantageously to increase the reactor ability up to a level higher than the maximal steady-state. Moreover, our findings showed that the pumping of hydrogen through the membrane was stimulated by the effect of periodic operations. The predicted results suggested that the created unsteady state mode by using a square wave function could give the better performances compared to the sinusoidal mode. Copyright © 2018 BCREC Group. All rights reservedReceived: 15th July 2017; Revised: 26th November 2017; Accepted: 8th December 2017; Available online: 11st June 2018; Published regularly: 1st August 2018How to Cite: Chibane, L. (2018). Simulation Study of a Membrane Reactor for Ultrapure Hydrogen Recovery from Methanol Steam Reforming Reaction under Periodic Steady-State. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 275-285 (doi:10.9767/bcrec.13.2.1340.275-285) 


2012 ◽  
Vol 193 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Marija Sarić ◽  
Yvonne C. van Delft ◽  
Raghavendra Sumbharaju ◽  
Dick F. Meyer ◽  
Arend de Groot

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Özgün Yücel ◽  
Mehmet Alaittin Hastaoglu

A 2D model and heat transfer mechanism are proposed to analyze and study oxidative steam reforming of methane (OSRM) in a membrane reactor. The model describes mass and thermal dispersions for gas and solid phases. It also accounts for transport through the membrane. The effects of operating parameters on methane conversion and H2 yield are analyzed. The parameters considered are the bed temperature (800–1100 K), molar oxygen-to-carbon ratio (0.0–0.5), and steam-to-carbon ratio (1–4). The results show that our model prevents overestimation and provides valuable additional information about temperature and concentration gradients in membrane reactor which is not available in a simple one-dimensional approach. Simulation results show that large temperature and concentration gradients cannot be avoided. The particle properties and the bed diameter have a considerable effect on the extent of gas mixing. Effective gas mixing coefficient also increases with increasing gas and solid velocity. In membrane reactor, simulation results show that mixing which depends on operational and design parameters has a strong effect on the hydrogen conversion. Also, the removal of hydrogen with membranes breaks equilibrium barrier leading to efficient production of hydrogen, reduced reactor size, and tube lengths. The model can be used in real-time simulation of industrial reactors for control and optimization purposes.


1991 ◽  
Vol 69 (5) ◽  
pp. 1061-1070 ◽  
Author(s):  
A. M. Adris ◽  
S. S. E. H. Elnashaie ◽  
R. Hughes

2022 ◽  
Vol 641 ◽  
pp. 119914
Author(s):  
Oscar Ovalle-Encinia ◽  
Han-Chun Wu ◽  
Tianjia Chen ◽  
Jerry Y.S. Lin

Sign in / Sign up

Export Citation Format

Share Document