Ultrasonic irradiation on hydrolysis of magnesium hydride to enhance hydrogen generation

2011 ◽  
Vol 36 (2) ◽  
pp. 1442-1447 ◽  
Author(s):  
Shun Hiroi ◽  
Sou Hosokai ◽  
Tomohiro Akiyama
2021 ◽  
pp. 38-52
Author(s):  
V. Berezovets ◽  
◽  
A. Kytsya ◽  
Yu. Verbovytskyy ◽  
I. Zavaliy ◽  
...  

Magnesium hydride (MgH2) has a high hydrogen storage capacity (7.6 wt%) and the Mg element is abundant on the earth. Due to its strong reduction ability, even at room temperature it can provide the hydrogen yield reaching 15.2 wt% H (1703 mL/g) when interacting with water, which makes it very attractive for the application in supplying hydrogen for autonomous H energy systems. However, the hydrolysis reaction is rapidly inhibited by the Mg(OH)2 passivation layer formed on the surface of MgH2. In order to remove the passivation film and improve the efficiency of the MgH2 hydrolysis process, several methods including alloying, ball milling, changing the aqueous solution, have been successfully utilized. In this paper the process of hydrolysis of magnesium hydride in aqueous solutions of MgCl2 used as a promotor of the interaction has been studied in detail. It was found that the initial hydrolysis rate, pH of the reaction mixture, and overall reaction yield are all linearly dependent of the logarithm of MgCl2 concentration. It has been shown that pH of the reaction mixture in the presence of MgCl2 is well described by considering a system “weak base and its salt with strong acid” type buffer solution. Reference data for this hydrolysis reaction were also carefully analyzed. The mechanism and the kinetic model of the process of MgH2 hydrolysis in water solutions involved passivation of the MgH2 surface by the formed Mg(OH)2 precipitate followed by its repassivation have been proposed. The obtained after the hydrolysis reactions precipitates were studied using XRD and EDS. It was found also that the final products of reaction consist of Mg(OH)2 (brucsite type) and remaining MgH2. This fact shows that the formation of solid species such as MgCl2 xMgO yH2O at the studied conditions is unlikely and decreasing of pH the reaction mixture has a different nature.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yanyan Chen ◽  
Ming Wang ◽  
Fenggang Guan ◽  
Rujun Yu ◽  
Yuying Zhang ◽  
...  

Magnesium hydride (MgH2) is one of the competitive hydrogen storage materials on account of abundant reserves and high hydrogen content. The hydrolysis of MgH2 is an ideal and controllable chemical hydrogen generation process. However, the hydrolyzed product of MgH2 is a passivation layer on the surface of the magnesium hydride, which will make the reaction continuity worse and reduce the rate of hydrogen release. In this work, hydrogen generation is controllably achieved by regulating the change of the surface tension value in the hydrolysis, a variety of surfactants were systematically investigated for the effect of the hydrolysis of MgH2 In the meantime, the passivation layer of MgH2 was observed by scanning electron microscope (SEM), and the surface tension value of the solution with different surfactants were monitored, investing the mechanism of hydrolysis adding different surfactants. Results show that different surfactants have different effects on hydrogen generation. The hydrogen generation capacity from high to low is as follows: tetrapropylammonium bromide (TPABr), sodium dodecyl benzene sulfonate (SDBS), Ecosol 507, octadecyl trimethyl ammonium chloride (OTAC), sodium alcohol ether sulfate (AES), and fatty methyl ester sulfonate (FMES-70). When the ratio of MgH2 to TPABr was 5 : 1, the hydrogen generation was increased by 52% and 28.3%, respectively, at the time of 100 s and 300 s. When hydrolysis time exceeds 80 s, the hydrogen generation with AES and FMES-70 began to decrease; it was reduced by more than 20% at the time of 300 s. SEM reveals that surfactants can affect the crystalline arrangement of Mg(OH)2 and make the passivation layer three-dimensionally layered providing channels for H2O molecules to react with MgH2.


2020 ◽  
Vol 31 (13) ◽  
pp. 134003 ◽  
Author(s):  
Yuantao Pei ◽  
Liqiong Wang ◽  
Liang Huang ◽  
Yuetong Hu ◽  
Quanli Jia ◽  
...  

2012 ◽  
Vol 519 ◽  
pp. 87-91 ◽  
Author(s):  
Xia Ni Huang ◽  
Zhang Han Wu ◽  
Ke Cao ◽  
Wen Zeng ◽  
Chun Ju Lv ◽  
...  

In the present investigation, the Al-C-KCl composite powders were prepared by a ball milling processing in an attempt to improve the hydrogen evolution capacity of aluminum in water. The results showed that the hydrogen generation reaction is affected by KCl amount, preparation processing, initial aluminum particle size and reaction temperature. Increasing KCl amount led to an increased hydrogen generation volume. The use of aluminum powder with a fine particle size could promote the aluminum hydrolysis reaction and get an increased hydrogen generation rate. The reaction temperature played an important role in hydrogen generation rate and the maximum hydrogen generation rate of 44.8 cm3 min-1g-1of Al was obtained at 75oC. The XRD results identified that the hydrolysis byproducts are bayerite (Al(OH)3) and boehmite (AlOOH).


2009 ◽  
Vol 34 (21) ◽  
pp. 8785-8791 ◽  
Author(s):  
Xiaojing Yang ◽  
Fangyi Cheng ◽  
Jing Liang ◽  
Zhanliang Tao ◽  
Jun Chen

Sign in / Sign up

Export Citation Format

Share Document