Effect of inside diameter on design fatigue life of stationary hydrogen storage vessel based on fracture mechanics

2014 ◽  
Vol 39 (25) ◽  
pp. 13634-13642 ◽  
Author(s):  
Chilou Zhou ◽  
Zhiyuan Li ◽  
Yongzhi Zhao ◽  
Zhengli Hua ◽  
Lin Zhang ◽  
...  
2021 ◽  
Author(s):  
Xiaoliang Jia ◽  
Zhiwei Chen ◽  
Fang Ji

Abstract High strength steel is usually used in fabrication of hydrogen storage vessel. The fracture toughness of high strength steel will be decreased and the crack sensitivity of the structures will be increased when high strength steels are applied in hydrogen environment with high pressure. Hence, the small cracks on the surface of pressure vessel may grow rapidly then lead to rupture. Therefore, this paper makes a series of research on how to evaluate the 4130X steel hydrogen storage vessel with fracture mechanics. This study is based on the assumption that there is a semi-elliptic crack on internal surface of hydrogen storage vessel. First of all, based on linear elastic fracture mechanics, the stress intensity factors and crack tolerance of 4130X steel hydrogen storage vessel have been calculated by means of finite element method based on interaction integral theory and polynomial-approximated approach from GB/T 34019 Ultra-high pressure vessels. Then, a comparative study has been made from the results of above methods to find out the difference between them. At last, the fatigue life of a 4130X steel hydrogen storage vessel has been predicted based on linear elastic fracture mechanics and Paris formula. The calculation methods and analysis conclusion can be used to direct the design and manufacture of hydrogen storage vessel.


2010 ◽  
Vol 35 (7) ◽  
pp. 2633-2636 ◽  
Author(s):  
Haiyan Bie ◽  
Xiang Li ◽  
Pengfei Liu ◽  
Yanlei Liu ◽  
Ping Xu

2015 ◽  
Vol 40 (38) ◽  
pp. 13183-13192 ◽  
Author(s):  
Juan Pedro Berro Ramirez ◽  
Damien Halm ◽  
Jean-Claude Grandidier ◽  
Stéphane Villalonga ◽  
Fabien Nony

2021 ◽  
Author(s):  
Peng Ge ◽  
Zhiping Chen ◽  
Mengjie Liu

Abstract Hydrogen storage cylinders are often used for medium- and short-distance transportation of hydrogen. The presence of hydrogen tends to increase the risk of using the gas cylinders. The alternating stress caused by factors such as hydrogen charging and discharging during the service process of the gas cylinder leads to the expansion of initial cracks inside the cylinder and the final fatigue fracture. At present, the fatigue life calculation of pressure vessels mainly adopts the S-N curve method, however, some steels do not have the S-N curve under the hydrogen environment, it is necessary to use fracture mechanics methods to analyze the fatigue life of gas cylinders in a high-pressure gaseous hydrogen environment. In this work, a method for calculating the fatigue life of fracture mechanics for hydrogen storage cylinders was established according to ASME VIII-3 KD-10. The development of the program was completed by Matlab. An example was given to illustrate the program. Firstly, basic parameters of the material used for the cylinder were obtained. Then, finite element method was used for stress analysis to obtain the fitting curve and the function expression of hoop stress. Finally, fatigue life calculations of high pressure hydrogen storage cylinder were made. The minimum service life of example was predicted to be 40 years. This result is consistent with the good service history of this type of container. This work could contribute to design, safety evaluation of hydrogen storage cylinders.


Sign in / Sign up

Export Citation Format

Share Document