Slow strain rate tensile test results of new multiphase 17%Cr stainless steel under hydrogen cathodic charging

2015 ◽  
Vol 40 (47) ◽  
pp. 16992-16999 ◽  
Author(s):  
Sérgio S.M. Tavares ◽  
Ivan N. Bastos ◽  
Juan M. Pardal ◽  
Talles R. Montenegro ◽  
M.R. da Silva
2013 ◽  
Vol 690-693 ◽  
pp. 2371-2378
Author(s):  
Wei Pu Xu ◽  
Yi Ting Liu

A brief overview is given in the conventional domed bursting disc structure and manufacturing method. 316L stainless steel as a template is selected. With the investigation on bursting disc material tensile test method, the test results are summarized,also the burst results of disc burst pressure in different sizes. With the help of bursting disc material performance test and bursting disc burst pressure test of 316L , the test results provide a reference for other types of bursting disc.


2001 ◽  
Vol 294 (3) ◽  
pp. 241-249 ◽  
Author(s):  
J Morisawa ◽  
M Kodama ◽  
N Yokota ◽  
K Nakata ◽  
K Fukuya ◽  
...  

CORROSION ◽  
1981 ◽  
Vol 37 (2) ◽  
pp. 98-103 ◽  
Author(s):  
Shantanu Maitra

Abstract Increased artificial aging from the T351 temper to T851 temper is known to increase resistance to stress corrosion cracking (SCO for Al-Cu-Mg alloy 2124. A series of incrementally aged 2124 alloy plate was tested for resistance to SCC by the slow strain rate technique and by the conventional alternate immersion test method. It is shown that slow strain rate test results are in agreement with the conventional test results. Using fracture energy and other loss in ductility parameters to denote resistance to SCC, it has been shown that this technique can be used as a more accurate SCC test. SEM examinations of fracture surfaces confirm the SCC indices obtained by the slow strain rate test.


Sign in / Sign up

Export Citation Format

Share Document