Numerical study on premixed hydrogen/air combustion characteristics and heat transfer enhancement of micro-combustor embedded with pin fins

Author(s):  
Yunfei Yan ◽  
Chenghua Zhang ◽  
Jie Gao ◽  
Kaiming Shen ◽  
Wei Gao
Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Author(s):  
T. I.-P. Shih ◽  
C.-S. Lee ◽  
K. M. Bryden

Almost all measurements of the heat-transfer coefficient (HTC) or Nusselt number (Nu) in gas-turbine cooling passages with heat-transfer enhancement features such as pin fins and ribs have been made under conditions, where the wall-to-bulk temperature, Tw/Tb, is near unity. Since Tw/Tb in gas-turbine cooling passages can be as high as 2.2 and vary appreciably along the passage, this study examines if it is necessary to match the rate of change in Tw/Tb when measuring Nu, whether Nu measured at Tw/Tb near unity needs to be scaled before used in design and analysis of turbine cooling, and could that scaling for ducts with heat-transfer enhancement features be obtained from scaling factors for smooth ducts because those scaling factors exist in the literature. In this study, a review of the data in the literature shows that it is unnecessary to match the rate of change in Tw/Tb for smooth ducts at least for the rates that occur in gas turbines. For ducts with heat-transfer enhancement features, it is still an open question. This study also shows Nu measured at Tw/Tb near unity needs to be scale to the correct Tw/Tb before it can be used for engine conditions. By using steady RANS analysis of the flow and heat transfer in a cooling channel with a staggered array of pin fins, the usefulness of the scaling factor, (Tw/Tb)r, from the literature for smooth ducts was examined. Nuengine, computed under engine conditions, was compared with those computed under laboratory conditions, Nulab, and scaled by (Tw/Tb)r; i.e., Nulab,scaled = Nulab (Tw/Tb)r. Results obtained show the error in Nulab,scaled relative to Nuengine can be as high as 36.6% if r = −0.7 and Tw/Tb = 1.573 in the “fully” developed region. Thus, (Tw/Tb)r based on smooth duct should not be used as a scaling factor for Nu in cooling passages with heat-transfer enhancement features. To address this inadequacy, a method is proposed for generating scaling factors, and a scaling factor was developed to scale the heat transfer from laboratory to engine conditions for a channel with pin fins.


Sign in / Sign up

Export Citation Format

Share Document