micro combustor
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 89)

H-INDEX

32
(FIVE YEARS 10)

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1560
Author(s):  
Niket S. Kaisare ◽  
Valeria Di Sarli

This study investigates the combined effect of catalyst placement and solid thermal conductivity on the stability of a U-bend catalytic heat-recirculating micro-combustor. The CFD code ANSYS Fluent 2020 R1 was used for two-dimensional simulations of lean premixed propane/air combustion by varying the inlet gas velocity, i.e., the input power. Three configurations were compared at low (3 W/(m K)) and high (30 W/(m K)) wall thermal conductivity: (A) the configuration in which both inner and outer walls are catalyst coated; (B) only the inner wall is catalyst coated; and (C) only the outer wall is catalyst coated. Numerical results show that, at low thermal conductivity, configuration (B) exhibits the same resistance to extinction as configuration (A), whereas at high thermal conductivity, configurations (B) and (C) exhibit much lower resistance to blowout than configuration (A). Accordingly, for low-power systems, which typically lose stability via extinction and thus require low-conductive materials, an optimal catalyst placement can be the partial coating of configuration (B). Conversely, for high-power systems, which are prone to blowout and thus require high-conductivity materials, a full coating of both the inner and outer walls is needed to guarantee higher stability. To elucidate these findings, a detailed analysis of the combustion behavior of the three configurations is presented.


2021 ◽  
pp. 407-415
Author(s):  
Arees Qamareen ◽  
Shah Shahood Alam ◽  
Mubashshir Ahmad Ansari

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6577
Author(s):  
Dongli Tan ◽  
Guicheng Ran ◽  
Guangling Xie ◽  
Jie Wang ◽  
Jianbin Luo ◽  
...  

With the improvement and development of micro-mechanical manufacturing technology, people can produce an increasing variety of micro-electromechanical systems in recent years, such as micro-satellite thrusters, micro-sensors, micro-aircrafts, micro-medical devices, micro-pumps, and micro-motors. At present, these micro-mechatronic systems are driven by traditional energy power systems, but these traditional energy power systems have such disadvantages as short endurance time, large size, and low energy density. Therefore, efforts were made to study micro-energy dynamical systems with small size, light gravity, high density and energy, and long duration so as to provide continuous and reliable power for these systems. In general, the micro-thermal photoelectric system not only has a simple structure, but also no moving parts. The micro-thermal photoelectric system is a micro-energy power system with good application prospects at present. However, as one of the most important structural components of micro-thermal photoelectric systems, the microburner, is the key to realize the conversion of fuel chemical energy to electric energy in micro-thermal photoelectric system. The studies of how to improve the flame stability and combustion efficiency are very necessary and interesting. Thus, some methods to improve the performance of micro-burners were introduced and summarized systematically, hoping to bring some convenience to researchers in the field.


2021 ◽  
pp. 1-5
Author(s):  
Bao Yang ◽  
Liangbing Hu ◽  
Weiwei Ping ◽  
Rishi Roy ◽  
Ashwani K. Gupta

Abstract One of the major challenges in the development of micro-combustors is heat losses that results in flame quenching, and reduced combustion efficiency and performance. In this work, a novel thermal barrier coating (TBC) using hexagonal boron nitride (h-BN) nanosheets as building blocks was developed and applied to a Swiss roll micro-combustor for determining its heat losses with increased temperatures inside the combustor that contributes to improved performance. It was found that by using the h-BN TBC, the combustion temperature of the micro-combustor increased from 850K to 970K under the same thermal loading and operational conditions. This remarkable temperature increase using the BN TBC originated from its low cross-plane thermal conductivity of 0.4 W m-1 K-1to mitigate the heat loss from the micro-combustor plates. Such a low thermal conductivity in the h-BN TBC is attributed to its interfacial resistance between the nanosheets. The development of h-BN TBC provides an effective approach to improve thermal management for performance improvements of gas turbine engines, rocket engines and all various kinds of micro-combustors.


Sign in / Sign up

Export Citation Format

Share Document