The effect of the reflected shock wave on the foam material

2021 ◽  
Vol 149 ◽  
pp. 103773
Author(s):  
Baohui Yang ◽  
Zengqiang Cao ◽  
Zhengping Chang ◽  
Guo Zheng
2021 ◽  
Author(s):  
Harmanjit Singh Chopra

A gasdynamic mechanism has been identified as a potential source of combustion instability in solid-propellant rocket motors (SRMs). This mechanism involves the reinforcement of a reflected shock wave in the nozzle convergence region of an SRM's exhaust nozzle. A shock tube apparatus was developed for the experimental component of this study. Various factors, such as the effect of different nozzle geometries and driven channel pressures, were examined. Also, a model of the shock tube was developed for computational fluid dynamics (CFD) simulations. These simulations were generated for comparison with the experimental results and to provide additional information regarding the nature of the flow behaviour. A gasdynamic mechanism has been identified as a potential source of combustion instability in solid-propellant rocket motors (SRMs). This mechanism involves the reinforcement of a reflected shock wave in the nozzle convergence region of an SRM's exhaust nozzle.A shock tube apparatus was developed for the experimental component of this study. Various factors, such as the effect of different nozzle geometries and driven channel pressures, were examined. Also, a model of the shock tube was developed for computational fluid dynamics (CFD) simulations. These simulations were generated for comparison with the experimental results and to provide additional information regarding the nature of the flow behaviour.Experimental and numerical pressure-time profiles confirm the appearance of transient radial wave activity following the initial incidence of the normal shock wave on the convergence region of the nozzle. The results establish that the strength of this activity is markedly dependent upon the nozzle convergence wall angle and the location within the shock tube


2004 ◽  
Vol 52 (603) ◽  
pp. 153-159 ◽  
Author(s):  
Munetsugu Kaneko ◽  
Igor Men’shov ◽  
Yoshiaki Nakamura

2009 ◽  
Vol 622 ◽  
pp. 33-62 ◽  
Author(s):  
R. A. HUMBLE ◽  
G. E. ELSINGA ◽  
F. SCARANO ◽  
B. W. van OUDHEUSDEN

An experimental study is carried out to investigate the three-dimensional instantaneous structure of an incident shock wave/turbulent boundary layer interaction at Mach 2.1 using tomographic particle image velocimetry. Large-scale coherent motions within the incoming boundary layer are observed, in the form of three-dimensional streamwise-elongated regions of relatively low- and high-speed fluid, similar to what has been reported in other supersonic boundary layers. Three-dimensional vortical structures are found to be associated with the low-speed regions, in a way that can be explained by the hairpin packet model. The instantaneous reflected shock wave pattern is observed to conform to the low- and high-speed regions as they enter the interaction, and its organization may be qualitatively decomposed into streamwise translation and spanwise rippling patterns, in agreement with what has been observed in direct numerical simulations. The results are used to construct a conceptual model of the three-dimensional unsteady flow organization of the interaction.


1995 ◽  
pp. 145-150 ◽  
Author(s):  
V. P. Fokeev ◽  
S. Abid ◽  
G. Dupré ◽  
V. Vaslier ◽  
C. Paillard

2020 ◽  
Vol 11 (3) ◽  
pp. 319-339
Author(s):  
Francisco Hernandez ◽  
Xihong Zhang ◽  
Hong Hao

This article conducts a comparative study on the effectiveness of ventilation to mitigate blasting effects on spherical chambers subjected to internal detonations of high explosives through finite element analysis using the software package AUTODYN. Numerical simulations show that ventilation is ineffective in mitigating the damage of spherical chambers subjected to internal high explosives explosions because the chamber response is mainly described by high-frequency membrane modes. Openings do not reduce the chamber response despite they can reduce the blast overpressure after the chamber reaches its peak response. Worse still, openings lead to stress concentration, which weakens the structure. Therefore, small openings may reduce the capacity of the chamber to resist internal explosions. In addition, because large shock waves impose the chamber to respond to a reverberation frequency associated with the re-reflected shock wave pulses, secondary re-reflected shock waves can govern the chamber response, and plastic/elastic resonance can occur to the chamber. Simulations show that the time lag between the first and the second shock wave ranges from 3 to 7 times the arrival time of the first shock wave, implying that the current simplified design approach should be revised. The response of chambers subjected to eccentric detonations is also studied. Results show that due to asymmetric explosions, other membrane modes may govern the chamber response and causes localized damage, implying that ventilation is also ineffective to mitigate the damage of spherical chambers subjected to eccentric detonations.


Sign in / Sign up

Export Citation Format

Share Document