Ballistic Impact Response of Complex Concentrated Alloys

Author(s):  
Saideep Muskeri ◽  
Philip A. Jannotti ◽  
Brian E. Schuster ◽  
Jeffrey T. Lloyd ◽  
Sundeep Mukherjee
2021 ◽  
Vol 165 ◽  
pp. 107986
Author(s):  
Vishwas Mahesh ◽  
Sharnappa Joladarashi ◽  
Satyabodh M. Kulkarni

Author(s):  
David E. Raymond ◽  
Greg S. Crawford ◽  
Chris A. Van Ee ◽  
Cynthia A. Bir

The majority of engineering studies that quantify the biomechanical response of the human head to blunt impacts have been focused primarily on replicating automotive-related trauma [1]. Relatively little biomechanical data exists on head response and skull fracture tolerance due to impacts with small surface area objects moving at high velocity, as can occur with the deployment of less-lethal kinetic energy munitions that are now available to police and military personnel. Law enforcement are trained to direct such munitions away from the head and at body regions least likely to sustain serious to life-threatening injury, such as the legs, however impacts to vital regions such as the head have occurred [2]. Previous research efforts have investigated facial impact response to blunt ballistic impacts however data regarding the temporo-parietal region are lacking and require study under these unique loading conditions [3]. Prior research has indicated that the scalp and soft tissue covering the skull are important factors to consider when studying impact response and skull fracture tolerance [4]. These data however have been limited primarily to impact velocities typical of the automotive crash environment. The purpose of this study is to evaluate the contribution of soft tissue to the biomechanical response and tolerance of the temporo-parietal region under blunt ballistic impact conditions.


2018 ◽  
Vol 188 ◽  
pp. 01011 ◽  
Author(s):  
George Bikakis ◽  
Nikolaos Tsigkros ◽  
Emilios Sideridis ◽  
Alexander Savaidis

In this article, the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys is investigated using the ANSYS LS-DYNA explicit nonlinear analysis software. The panels are subjected to central normal high velocity ballistic impact by a cylindrical projectile. Using validated finite element models, the influence of the mechanical properties of the constituent metal alloy on the ballistic resistance of the fiber-metal laminates and the monolithic plates is studied. Six steel alloys are examined, namely 304 stainless steel, 1010, 1080, 4340, A36 steel and DP 590 dual phase steel. A comparison with the response of GLARE plates is also implemented. It is found that the ballistic limits of the panels can be substantially affected by the constituent alloy. The stainless steel based panels offer the highest ballistic resistance followed by the A36 steel based panels which in turn have higher ballistic resistance than the 2024-T3 aluminum based panels. The A36 steel based panels have higher ballistic limit than the 1010 steel based panels which in turn have higher ballistic limit than the 1080 steel based panels. The behavior of characteristic impact variables during the ballistic impact phenomenon is analyzed.


Sign in / Sign up

Export Citation Format

Share Document