shear thickening fluid
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 115)

H-INDEX

31
(FIVE YEARS 9)

Author(s):  
Lalin Lam ◽  
Wensu Chen ◽  
Hong Hao ◽  
Zhejian Li ◽  
Ngoc San Ha ◽  
...  

2022 ◽  
Vol 30 ◽  
pp. 096739112110633
Author(s):  
Deepak SampathKumar ◽  
Thirumalaikumarasamy Duraisamy ◽  
Thirumal Pattabi ◽  
AshokKumar Mohankumar

At present, puncture resistance and rheological performance of shear thickening fluid (STF) is an essential design requirement for a soft armour material (target sample). The target sample is prepared with a dip and dry process of STF impregnated woven polypropylene (PP) fabric. These samples were tested and compared with neat PP fabric. The penetration depth of target samples is highly sensitive to the coefficient of friction between the indenter’s nose shape geometry and the target sample. The STF is prepared by mechanical dispersion of synthesized microsphere silica microparticles at a volume fraction of 57% in polyethylene glycol (400 g/mol). The rheological response indicates that the prepared concentration of silica microparticles in the STF suspension is observed to have a better shear thickening effect. The viscosity of suspension is highly sensitive to silica aspect ratio, volume fraction and particle size distribution in this work. Tensile tests along with puncture resistance with different indenter nose shapes geometry (hemispherical, elliptical, flat and conical) have been performed in the present study. Results indicate that the energy absorption is more with the hemispherical indenter and less with that of the conical indenter, which is attributed to the minimum surface area of contact as compared to all other indenters. A total of 16 number of fabricated target samples with various coating thicknesses of STF impregnated fabrics achieved the desired tensile strength, modulus and puncture resistance.


2022 ◽  
pp. 115208
Author(s):  
Haiqing Liu ◽  
Huixin Zhu ◽  
Kunkun Fu ◽  
Guangyong Sun ◽  
Yuan Chen ◽  
...  

Author(s):  
Li Chang ◽  
Ziyan Man ◽  
Lin Ye

This paper reported the new polishing technique by using a shear thickening fluid (STF). In experiments, the steel workpiece was immersed into the STF under the static condition. When the workpiece started rotating at a certain speed, the surrounding STF became solidified due to the shear thickening effect. Consequently, the solidified STF held the abrasive particles and polished the surfaces of the workpiece. The surface roughness of the treated surfaces was clearly dependent on the size of the abrasive particles. Owing to the reversible phase transition between liquid and solid status for the STF, the polishing process can be conducted without the use of polishing pads. Moreover, the new polishing technique using the STF can polish some complex structures having the surfaces with different heights and/or orientations, which cannot be achieved by the traditional one-step polishing method.


Author(s):  
Jae-Myoung Kim

We show that the energy norm of weak solutions to Vlasov equation coupled with a shear thickening fluid on the whole space has a decay rate the energy norm $E(t) \leq {C}/{(1+t)^{\alpha }}, \forall t \geq 0$ for $\alpha \in (0,3/2)$ .


2021 ◽  
Vol 43 ◽  
pp. 33-43
Author(s):  
Gökhan Haydarlar ◽  
Mehmet Alper Sofuoğlu ◽  
Selim Gürgen ◽  
Melih Cemal Kushan ◽  
Mesut Tekkalmaz

This paper presents the feasibility of developing an electromechanical in-situ viscosity measurement technique by analyzing the detectability of small variations in the viscosity of different shear thickening fluids and their different compositions. Shear thickening fluid (STF) is a kind of non-Newtonian fluid showing an increasing viscosity profile under loading. STF is utilized in several applications to take advantage of its tunable rheology. However, process control in different STF applications requires rheological measurements, which cause a costly investment and long-lasting labor. Therefore, one of the most commonly used in-situ structural health monitoring techniques, electromechanical impedance (EMI), was used in this study. In order to actuate the medium electromechanically, a piezoelectric wafer active sensor (PWAS) was used. The variations in the spectral response of PWAS resonator that can be submerged into shear thickening fluid are analyzed by the root mean square deviation, mean absolute percentage deviation and correlation coefficient deviation. According to the results, EMI metrics provide good correlations with the rheological parameters of STF and thereby enabling quick and low-cost rheological control for STF applications such as vibration dampers or stiffness control systems.


2021 ◽  
Vol 3 (4) ◽  
pp. 045013
Author(s):  
Vivek Bhardwaj

Abstract This paper reports the improvement in the performance behaviors of non-Newtonian fluid lubricated journal bearings employing a rectangular pocket. Coefficient of friction and load carrying capacity of pocketed and non-pocketed bearings are reported and discussed. In the numerical approach, non-Newtonian behavior of lubricant is simulated employing the power law model. Various cases of bearings having different axial length to diameter ratios [(L/D) in the range 0.5–2.0] are considered. Lubricants of different rheology viz. pseudoplastic, Newtonian and shear thickening were employed for lubricating the bearings. Rheology of lubricant is controlled by varying the power law index n in the range 0.9–1.1. Based on the investigation, it is found that the pocketed bearing yields significantly reduced coefficient of friction and higher load carrying capacity in comparison to the non-pocketed bearing. Also, the performance of pocketed bearing improves with the increase in the power law index. Best performance of the pocketed bearing is observed for the bearing having L/D value of 0.5 at high eccentricity ratio when lubricated with the shear thickening fluid (n=1.1).


Sign in / Sign up

Export Citation Format

Share Document