Robust control for fractional-order four-wing hyperchaotic system using LMI

Optik ◽  
2013 ◽  
Vol 124 (22) ◽  
pp. 5807-5810 ◽  
Author(s):  
Chunlai Li ◽  
Kalin Su ◽  
Jing Zhang ◽  
Duqu Wei
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Chaojun Wu ◽  
Gangquan Si ◽  
Yanbin Zhang ◽  
Ningning Yang

An efficient approach of inverse optimal control and adaptive control is developed for global asymptotic stabilization of a novel fractional-order four-wing hyperchaotic system with uncertain parameter. Based on the inverse optimal control methodology and fractional-order stability theory, a control Lyapunov function (CLF) is constructed and an adaptive state feedback controller is designed to achieve inverse optimal control of a novel fractional-order hyperchaotic system with four-wing attractor. Then, an electronic oscillation circuit is designed to implement the dynamical behaviors of the fractional-order four-wing hyperchaotic system and verify the satisfactory performance of the controller. Comparing with other fractional-order chaos control methods which may have more than one nonlinear state feedback controller, the inverse optimal controller has the advantages of simple structure, high reliability, and less control effort that is required and can be implemented by electronic oscillation circuit.


2008 ◽  
Vol 42 (6-8) ◽  
pp. 999-1014 ◽  
Author(s):  
Abdelbaki Djouambi ◽  
Abdelfatah Charef ◽  
Alina Voda-Besancon

Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


Author(s):  
Mohammad Hossein Basiri ◽  
Mohammad Saleh Tavazoei

Recently, a robust controller has been proposed to be used in control of plants with large uncertainty in location of one of their poles. By using this controller, not only the phase margin and gain crossover frequency are adjustable for the nominal case but also the phase margin remains constant, notwithstanding the variations in location of the uncertain pole of the plant. In this paper, the tuning rule of the aforementioned controller is extended such that it can be applied in control of plants modeled by fractional order models. Numerical examples are provided to show the effectiveness of the tuned controller.


Entropy ◽  
2015 ◽  
Vol 17 (12) ◽  
pp. 8299-8311 ◽  
Author(s):  
Shaobo He ◽  
Kehui Sun ◽  
Huihai Wang

2018 ◽  
Vol 28 (13) ◽  
pp. 1850167 ◽  
Author(s):  
Sen Zhang ◽  
Yicheng Zeng ◽  
Zhijun Li ◽  
Chengyi Zhou

Recently, the notion of hidden extreme multistability and hidden attractors is very attractive in chaos theory and nonlinear dynamics. In this paper, by utilizing a simple state feedback control technique, a novel 4D fractional-order hyperchaotic system is introduced. Of particular interest is that this new system has no equilibrium, which indicates that its attractors are all hidden and thus Shil’nikov method cannot be applied to prove the existence of chaos for lacking hetero-clinic or homo-clinic orbits. Compared with other fractional-order chaotic or hyperchaotic systems, this new system possesses three unique and remarkable features: (i) The amazing and interesting phenomenon of the coexistence of infinitely many hidden attractors with respect to same system parameters and different initial conditions is observed, meaning that hidden extreme multistability arises. (ii) By varying the initial conditions and selecting appropriate system parameters, the striking phenomenon of antimonotonicity is first discovered, especially in such a fractional-order hyperchaotic system without equilibrium. (iii) An attractive special feature of the convenience of offset boosting control of the system is also revealed. The complex and rich hidden dynamic behaviors of this system are investigated by using conventional nonlinear analysis tools, including equilibrium stability, phase portraits, bifurcation diagram, Lyapunov exponents, spectral entropy complexity, and so on. Furthermore, a hardware electronic circuit is designed and implemented. The hardware experimental results and the numerical simulations of the same system on the Matlab platform are well consistent with each other, which demonstrates the feasibility of this new fractional-order hyperchaotic system.


Sign in / Sign up

Export Citation Format

Share Document