A parallel system for adaptive optics based on parallel mutation PSO algorithm

Optik ◽  
2014 ◽  
Vol 125 (1) ◽  
pp. 329-332 ◽  
Author(s):  
Ying Chen ◽  
Yong Feng ◽  
Xinyang Li
2020 ◽  
Vol 496 (4) ◽  
pp. 5126-5138
Author(s):  
Jiaying Wang ◽  
Youming Guo ◽  
Lin Kong ◽  
Lanqiang Zhang ◽  
Naiting Gu ◽  
...  

ABSTRACT Linear quadratic Gaussian (LQG) control is an appealing control strategy to mitigate disturbances in adaptive optics (AO) systems. The key of this method is to quickly and consecutively build an accurate dynamical model to track time-varying disturbances such as turbulence, wind load and vibrations. In order to address this problem, we propose an automatic identification method consisting mainly of an improved spectrum separation procedure and a parameter optimization process based on the particle swarm optimization (PSO) algorithm. The improved spectrum separation can pick out perturbation peaks more accurately, especially when some peaks are very close together. Moreover, compared with the Levenberg–Marquardt method and the maximum-likelihood technique based on grids, the PSO algorithm has a faster convergence speed and lower computational burden, and thus is easier to implement. The entire identification process can run automatically online without human intervention. This identification method is verified with a synthetic disturbance profile in a simulation. Furthermore, the performance of the method is evaluated with consecutive measurement data recorded by the 1-m New Vacuum Solar Telescope at the Fuxian Solar Observatory.


Author(s):  
Carlos Correia ◽  
Henri-Francois Raynaud ◽  
Caroline Kulcsar ◽  
Jean-Marc Conan
Keyword(s):  

2020 ◽  
Vol 10 (10) ◽  
pp. 52-58
Author(s):  
Sergey M. AFONIN ◽  

An electroelastic actuator for nanomechatronics is used in nanotechnology, adaptive optics, microsurgery, microelectronics, and biomedicine to actuate or control mechanisms, systems based on the electroelastic effect, and to convert electrical signals into mechanical displacements and forces. In nanomechatronic systems, a piezoactuator is used in scanning microscopy, laser systems, in astronomy for precision alignment, for compensation of temperature, gravitational deformations and atmospheric turbulence, focusing, and stabilizing the image. In this study, a condition for absolute stability of an electroelastic actuator control system for nanomechatronics under deterministic and random inputs is obtained. A number of equilibrium positions in an electroelastic actuator mechatronic control system are found, the totality of which is represented by a straight line segment. The electroelastic actuator’s deformation control system dead band relative width is determined for the actuator’s symmetric and asymmetric hysteresis characteristics. Under deterministic inputs and with fulfilling the condition for the derivative of the nonlinear hysteresis actuator deformation characteristic, the set of equilibrium positions of the electroelastic actuator control system for nanomechatronics is absolutely stable. Under random inputs, the system absolute stability with respect to the mathematical expectations of the electroelastic actuator mechatronic control system equilibrium positions has been determined subject to fulfilling the condition on the derivative of the actuator hysteresis characteristic.


Sign in / Sign up

Export Citation Format

Share Document