Scene classification of remote sensing image based on deep network grading transferring

Optik ◽  
2018 ◽  
Vol 168 ◽  
pp. 127-133 ◽  
Author(s):  
Zhou Yang ◽  
Xiao-dong Mu ◽  
Feng-an Zhao
2020 ◽  
Vol 12 (11) ◽  
pp. 1887 ◽  
Author(s):  
Xiaolei Zhao ◽  
Jing Zhang ◽  
Jimiao Tian ◽  
Li Zhuo ◽  
Jie Zhang

The scene classification of a remote sensing image has been widely used in various fields as an important task of understanding the content of a remote sensing image. Specially, a high-resolution remote sensing scene contains rich information and complex content. Considering that the scene content in a remote sensing image is very tight to the spatial relationship characteristics, how to design an effective feature extraction network directly decides the quality of classification by fully mining the spatial information in a high-resolution remote sensing image. In recent years, convolutional neural networks (CNNs) have achieved excellent performance in remote sensing image classification, especially the residual dense network (RDN) as one of the representative networks of CNN, which shows a stronger feature learning ability as it fully utilizes all the convolutional layer information. Therefore, we design an RDN based on channel-spatial attention for scene classification of a high-resolution remote sensing image. First, multi-layer convolutional features are fused with residual dense blocks. Then, a channel-spatial attention module is added to obtain more effective feature representation. Finally, softmax classifier is applied to classify the scene after adopting data augmentation strategy for meeting the training requirements of the network parameters. Five experiments are conducted on the UC Merced Land-Use Dataset (UCM) and Aerial Image Dataset (AID), and the competitive results demonstrate that our method can extract more effective features and is more conducive to classifying a scene.


2021 ◽  
Vol 13 (14) ◽  
pp. 2728
Author(s):  
Qingjie Zeng ◽  
Jie Geng ◽  
Kai Huang ◽  
Wen Jiang ◽  
Jun Guo

Few-shot classification of remote sensing images has attracted attention due to its important applications in various fields. The major challenge in few-shot remote sensing image scene classification is that limited labeled samples can be utilized for training. This may lead to the deviation of prototype feature expression, and thus the classification performance will be impacted. To solve these issues, a prototype calibration with a feature-generating model is proposed for few-shot remote sensing image scene classification. In the proposed framework, a feature encoder with self-attention is developed to reduce the influence of irrelevant information. Then, the feature-generating module is utilized to expand the support set of the testing set based on prototypes of the training set, and prototype calibration is proposed to optimize features of support images that can enhance the representativeness of each category features. Experiments on NWPU-RESISC45 and WHU-RS19 datasets demonstrate that the proposed method can yield superior classification accuracies for few-shot remote sensing image scene classification.


2021 ◽  
Vol 336 ◽  
pp. 06030
Author(s):  
Fengbing Jiang ◽  
Fang Li ◽  
Guoliang Yang

Convolution neural network for remote sensing image scene classification consumes a lot of time and storage space to train, test and save the model. In this paper, firstly, elastic variables are defined for convolution layer filter, and combined with filter elasticity and batch normalization scaling factor, a compound pruning method of convolution neural network is proposed. Only the superparameter of pruning rate needs to be adjusted during training. in the process of training, the performance of the model can be improved by means of transfer learning. In this paper, algorithm tests are carried out on NWPU-RESISC45 remote sensing image data to verify the effectiveness of the proposed method. According to the experimental results, the proposed method can not only effectively reduce the number of model parameters and computation, but also ensure the accuracy of the algorithm in remote sensing image classification.


Author(s):  
W. Geng ◽  
W. Zhou ◽  
S. Jin

Abstract. Scene classification plays an important role in remote sensing field. Traditional approaches use high-resolution remote sensing images as data source to extract powerful features. Although these kind of methods are common, the model performance is severely affected by the image quality of the dataset, and the single modal (source) of images tend to cause the mission of some scene semantic information, which eventually degrade the classification accuracy. Nowadays, multi-modal remote sensing data become easy to obtain since the development of remote sensing technology. How to carry out scene classification of cross-modal data has become an interesting topic in the field. To solve the above problems, this paper proposes using feature fusion for cross-modal scene classification of remote sensing image, i.e., aerial and ground street view images, expecting to use the advantages of aerial images and ground street view data to complement each other. Our cross- modal model is based on Siamese Network. Specifically, we first train the cross-modal model by pairing different sources of data with aerial image and ground data. Then, the trained model is used to extract the deep features of the aerial and ground image pair, and the features of the two perspectives are fused to train a SVM classifier for scene classification. Our approach has been demonstrated using two public benchmark datasets, AiRound and CV-BrCT. The preliminary results show that the proposed method achieves state-of-the-art performance compared with the traditional methods, indicating that the information from ground data can contribute to aerial image classification.


Sign in / Sign up

Export Citation Format

Share Document