Magnetic and optical properties of δ-SnSe doped by transition-metal atoms: A first-principle calculation

Optik ◽  
2020 ◽  
Vol 214 ◽  
pp. 164810
Author(s):  
Y. Yu ◽  
T.L. Yin
2020 ◽  
Vol 41 (1) ◽  
pp. 38-47
Author(s):  
闫宇星 YAN Yu-xing ◽  
汪 帆 WANG Fan ◽  
李付绍 LI Fu-shao ◽  
张珏璇 ZHANG Jue-xuan ◽  
王红成 WANG Hong-chen ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1601 ◽  
Author(s):  
Feng Chen ◽  
Li Fan ◽  
Xun Hou ◽  
Chunmei Li ◽  
Zhi-Qian Chen

Based on the monolayer BC2N structure, the structural, electronic and magnetic properties of 3d transition metal (TM) atoms (V, Cr, Mn, Fe, Co and Ni) adsorbed on the monolayer BC2N, are studied by using the first principle method. The results show that 3d transition metal atoms are stably adsorbed on the monolayer BC2N. The most stable adsorption sites for V, Cr, and Mn atoms are the hollow adsorption site (H) of BC2N, while the other 3d TM atoms (Fe, Co, Ni) are more readily adsorbed above the C atoms (Tc). The majority of TM atoms are chemically adsorbed on BC2N, whereas Cr and Mn atoms are physically adsorbed on BC2N. Except for Ni, most 3d transition metal atoms can induce the monolayer BC2N magnetization, and the spin-charge density indicated that the magnetic moments of the adsorption systems are mainly concentrated on the TM atoms. Moreover, the introduction of TM atoms can modulate the electronic structure of a single layer of BC2N, making it advantageous for spintronic applications, and for the development of magnetic nanostructures.


2012 ◽  
Vol 33 (9) ◽  
pp. 960-965
Author(s):  
崔冬萌 CUI Dong-meng ◽  
贾锐 JIA Rui ◽  
谢泉 XIE Quan ◽  
赵珂杰 ZHAO Ke-jie

Sign in / Sign up

Export Citation Format

Share Document