Design and performance analysis of background material of zeonex based high core power fraction and extremely low effective material loss of photonic crystal fiber in the terahertz (THz) wave pulse for many types of communication areas

Optik ◽  
2021 ◽  
pp. 167519
Author(s):  
Md. Abdullah-Al-Shafi ◽  
Shuvo Sen ◽  
Md. Selim Hossain
Photonics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 32 ◽  
Author(s):  
Bikash Paul ◽  
Md. Haque ◽  
Kawsar Ahmed ◽  
Shuvo Sen

A novel hexahedron fiber has been proposed for biomedical imaging applications and efficient guiding of terahertz radiation. A finite element method (FEM) has been applied to investigate the guiding properties rigorously. All numerically computational investigated results for optimum parameters have revealed the high numerical aperture (NA) of 0.52, high core power fraction of 64%, near zero flattened dispersion of 0.5 ± 0.6 ps/THz/cm over the 0.8–1.4 THz band and low losses with 80% of the bulk absorption material loss. In addition, the V–parameter is also inspected for checking the proposed fiber modality. The proposed single-mode hexahedron photonic crystal fiber (PCF) can be highly applicable for convenient broadband transmission and numerous applications in THz technology.


2019 ◽  
Vol 40 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Shuvo Sen ◽  
Md. Shadidul Islam ◽  
Bikash Kumar Paul ◽  
Md. Ibadul Islam ◽  
Sawrab Chowdhury ◽  
...  

Abstract In this article, a low loss circular photonic crystal fiber (C-PCF) has been suggested as Terahertz (THz) waveguide. Both the core and cladding vicinity of the suggested PCF are constituted by circular-shaped air holes. The optical properties such as effective material loss, effective area, core power fraction and V-parameter have numerically been probed by utilizing full vectorial finite element method (FEM) with perfectly matched layers (FMLs) boundary condition. The reported PCF reveals low absorption loss and large effective area of 0.04 cm−1 and 2.80×10−07 m2 respectively at 1 THz operating frequency. In addition, the core power fraction of the fiber is about 50.83 % at the same activation frequency. The V-parameter shows that the proposed PCF acts as a single mode over 0.70 to 1.15 THz frequency. So, the reported PCF offers the best performance in long distance communication applications.


2020 ◽  
Vol 41 (4) ◽  
pp. 393-401 ◽  
Author(s):  
Fahad Ahmed ◽  
Subrata Roy ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed ◽  
Ali Newaz Bahar

AbstractAn enormously low loss symmetrical hybrid decagonal porous core spiral photonic crystal fiber (SH-PCF) has been proposed for terahertz (THz) wave guiding. The modal characteristics of the fiber and its mathematical analysis have been numerically completed using a full-vector finite element method (FEM). Simulation results show an ultra-low material loss of 0.0167 cm−1 and large effective area 1.95×106 µm2 which is 91.6 % of bulk absorption material loss at controlling frequency f=1.0 THz with a core porosity 42 %. Additionally, proposed structure establishes the comparatively higher core power fraction maintaining lower scattering loss about 1.8×10−15 dB/cm at the same operating frequency. It promises the aforementioned advantages for efficient THz wave propagation.


Sign in / Sign up

Export Citation Format

Share Document