Approach into the use of probabilistic neural networks for automated classification of tool malfunctions in broaching

2006 ◽  
Vol 46 (12-13) ◽  
pp. 1445-1448 ◽  
Author(s):  
Dragoş A. Axinte
2004 ◽  
Vol 34 (1) ◽  
pp. 37-52
Author(s):  
Wiktor Jassem ◽  
Waldemar Grygiel

The mid-frequencies and bandwidths of formants 1–5 were measured at targets, at plus 0.01 s and at minus 0.01 s off the targets of vowels in a 100-word list read by five male and five female speakers, for a total of 3390 10-variable spectrum specifications. Each of the six Polish vowel phonemes was represented approximately the same number of times. The 3390* 10 original-data matrix was processed by probabilistic neural networks to produce a classification of the spectra with respect to (a) vowel phoneme, (b) identity of the speaker, and (c) speaker gender. For (a) and (b), networks with added input information from another independent variable were also used, as well as matrices of the numerical data appropriately normalized. Mean scores for classification with respect to phonemes in a multi-speaker design in the testing sets were around 95%, and mean speaker-dependent scores for the phonemes varied between 86% and 100%, with two speakers scoring 100% correct. The individual voices were identified between 95% and 96% of the time, and classifications of the spectra for speaker gender were practically 100% correct.


Radio Science ◽  
2003 ◽  
Vol 38 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Wing ◽  
R. A. Greenwald ◽  
C.-I. Meng ◽  
V. G. Sigillito ◽  
L. V. Hutton

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shrouq H. Aleithan ◽  
Doaa Mahmoud-Ghoneim

AbstractThe need for a fast and robust method to characterize nanostructure thickness is growing due to the tremendous number of experiments and their associated applications. By automatically analyzing the microscopic image texture of MoS2 and WS2, it was possible to distinguish monolayer from few-layer nanostructures with high accuracy for both materials. Three methods of texture analysis (TA) were used: grey level histogram (GLH), grey levels co-occurrence matrix (GLCOM), and run-length matrix (RLM), which correspond to first, second, and higher-order statistical methods, respectively. The best discriminating features were automatically selected using the Fisher coefficient, for each method, and used as a base for classification. Two classifiers were used: artificial neural networks (ANN), and linear discriminant analysis (LDA). RLM with ANN was found to give high classification accuracy, which was 89% and 95% for MoS2 and WS2, respectively. The result of this work suggests that RLM, as a higher-order TA method, associated with an ANN classifier has a better ability to quantify and characterize the microscopic structure of nanolayers, and, therefore, categorize thickness to the proper class.


Sign in / Sign up

Export Citation Format

Share Document