Stiffness influential factors-based dynamic modeling and its parameter identification method of fixed joints in machine tools

2010 ◽  
Vol 50 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Kuanmin Mao ◽  
Bin Li ◽  
Jun Wu ◽  
Xinyu Shao
AIP Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 055302
Author(s):  
Yong Zhu ◽  
Guangpeng Li ◽  
Shengnan Tang ◽  
Wanlu Jiang ◽  
Zhijian Zheng

Author(s):  
Di Yao ◽  
Philipp Ulbricht ◽  
Stefan Tonutti ◽  
Kay Büttner ◽  
Prokop Günther

Pervasive applications of the vehicle simulation technology are a powerful motivation for the development of modern automobile industry. As basic parameters of road vehicle, vehicle dynamic parameters can significantly influence the ride comfort and dynamics of vehicle, and therefore have to be calculated accurately to obtain reliable vehicle simulation results. Aiming to develop a general solution, which is applicable to diverse test rigs with different mechanisms, a novel model-based parameter identification approach using optimized excitation trajectory is proposed in this paper to identify the vehicle dynamic parameters precisely and efficiently. The proposed approach is first verified against a virtual test rig using a universal mechanism. The simulation verification consists of four sections: (a) kinematic analysis, including the analysis of forward/inverse kinematic and singularity architecture; (b) dynamic modeling, in which three kinds of dynamic modeling method are used to derive the dynamic models for parameter identification; (c) trajectory optimization, which aims to search for the optimal trajectory to minimize the sensitivity of parameter identification to measurement noise; and (d) multibody simulation, by which vehicle dynamic parameters are identified based on the virtual test rig in the simulation environment. In addition to the simulation verification, the proposed parameter identification approach is applied to the real test rig (vehicle inertia measuring machine) in laboratory subsequently. Despite the mechanism difference between the virtual test rig and vehicle inertia measuring machine, this approach has shown an excellent portability. The experimental results indicate that the proposed parameter identification approach can effectively identify the vehicle dynamic parameters without a high requirement of movement accuracy.


2019 ◽  
Vol 9 (13) ◽  
pp. 2701 ◽  
Author(s):  
Li ◽  
Yang ◽  
Gao ◽  
Su ◽  
Wei ◽  
...  

Error compensation technology offers a significant means for improving the geometric accuracy of CNC machine tools (MTs) as well as extending their service life. Measurement and identification are important prerequisites for error compensation. In this study, a measurement system, mainly composed of a self-developed micro-angle sensor and an L-shape standard piece, is proposed. Meanwhile, a stepwise identification method, based on an integrated error model, is established. In one measurement, four degrees-of-freedom errors, including two-dimensional displacement and two-dimensional angle of a linear guideway, can be obtained. Furthermore, in accordance with the stepwise identification method, the L-shape standard piece is placed in three different planes, so that the measurement and identification of all 21 geometric errors can be implemented. An experiment is carried out on a coordinate measuring machine (CMM) to verify the system. The residual error of the angle error, translation error and squareness error are 1.5″, 2 μm and 3.37″, respectively, and these are compared to the values detected by a Renishaw laser interferometer.


Sign in / Sign up

Export Citation Format

Share Document