Study on micro-topographical removals of diamond grain and metal bond in dry electro-contact discharge dressing of coarse diamond grinding wheel

Author(s):  
Y.J. Lu ◽  
J. Xie ◽  
X.H. Si
2006 ◽  
Vol 304-305 ◽  
pp. 76-80 ◽  
Author(s):  
Jin Xie ◽  
Yong Tang ◽  
Junichi Tamaki

This paper conducted Electro-Contact Discharge (ECD) dressing experiment for #600 diamond grinding wheel to understand how fine diamond grits protrude from metal-bonded wheel surface. The SEM observation, EDS analysis, image processing and 3D grit modeling on wheel surface were carried out to investigate grit protrusion characteristics. Then ECD dressing and mechanical dressing experiments were carried out to identify the effect of grit protrusion feature on grinding performance. It is confirmed that the dressed wheel surface topography is sensitive to open circuit voltage Ei, discharge polarity and electrode composition. Meanwhile, ECD dressing with Ei=15V and straight polarity can produce superior protrusion topography without the damage of diamond crystal faces and the bond tail behind protrusive grit. It can obtain better ground surface of hard-brittle material than mechanical dressing with the bond tail.


Author(s):  
Xu Yue Wang ◽  
Ren Ke Kang ◽  
Wen Ji Xu ◽  
L.J. Wang ◽  
Dong Ming Guo

2007 ◽  
Vol 329 ◽  
pp. 145-150 ◽  
Author(s):  
Xu Yue Wang ◽  
Ren Ke Kang ◽  
Wen Ji Xu ◽  
Lian Ji Wang ◽  
Dong Ming Guo

Laser processing of super-abrasive grinding wheel is paying a role in a truing/dressing technique to complement mechanical methods recently. However, normal dressing/truing is difficult owing to the toughness of metal-bond materials and high hardness of diamond abrasive. Both geometric and mathematic models were developed to improve laser processing quality and predict various processing parameters, such as focal offset, and incident power, and power density to perform material removal during laser processing a metal-bond diamond grinding wheel. Various trends of the geometrical features of dressing zone in terms of the varying focal offsets were analyzed. Discussions were also given on dressing-zone geometry control. Experimental studies were carried out using different processing parameters to test the effects of laser poweres on dressing quality. Further grinding-force measurement determined the laser dressing parameters with respect to the wheel surface conditions. The normal force FN reduces up to 20%, while tangential force FT decreases to 7% too.The outcomes were shown well agreement with predicted results.


2006 ◽  
Vol 315-316 ◽  
pp. 421-424 ◽  
Author(s):  
Jin Xie ◽  
Junichi Tamaki ◽  
Yong Tang

This paper introduces a new arc envelop truing method of metal-bonded diamond grinding. It utilizes the arc profile of rotary cone-shaped truer, namely electrode, to envelop wheel profile during Electro-Contact Discharge (ECD) truing. The aim is to realize precision truing of diamond grinding wheel profile for grinding of hard-brittle material. The arc envelope truing principle of wheel profile was analyzed by the use of 3D spatial geometry to identify lean angle of the truer. Then the arc envelop truing and grinding experiments were carried out to investigate truing precision and ground surface in comparison with straight truing and GC stick truing. It was confirmed that the arc envelope truing can obtain sub-micro truing precision of metal-bonded diamond grinding wheel at the depth of cut of micro degree. It may improve greatly form accuracy and ground surface.


Sign in / Sign up

Export Citation Format

Share Document