An experimental study on discharge mediums used for electro-contact discharge dressing of metal-bonded diamond grinding wheel

2008 ◽  
Vol 208 (1-3) ◽  
pp. 239-244 ◽  
Author(s):  
J. Xie ◽  
J. Tamaki
2011 ◽  
Vol 415-417 ◽  
pp. 594-597 ◽  
Author(s):  
Hua Xu ◽  
Cui Jiao Liao ◽  
Qing Ming Weng

To improve the self-sharpening ability and increase clearance for debris of metal bonded diamond grinding wheel, the porosity structure is applied to the diamond grinding wheel in this paper. By selecting different inducers diamond composites are burned under appropriate agglomeration condition. The experiment results indicate that diamond composites obtained through two certain inducers can meet both the demand of pore-creating and intensity, so can be used to make wheels. This conclusion lays a foundation for further study.


2006 ◽  
Vol 304-305 ◽  
pp. 76-80 ◽  
Author(s):  
Jin Xie ◽  
Yong Tang ◽  
Junichi Tamaki

This paper conducted Electro-Contact Discharge (ECD) dressing experiment for #600 diamond grinding wheel to understand how fine diamond grits protrude from metal-bonded wheel surface. The SEM observation, EDS analysis, image processing and 3D grit modeling on wheel surface were carried out to investigate grit protrusion characteristics. Then ECD dressing and mechanical dressing experiments were carried out to identify the effect of grit protrusion feature on grinding performance. It is confirmed that the dressed wheel surface topography is sensitive to open circuit voltage Ei, discharge polarity and electrode composition. Meanwhile, ECD dressing with Ei=15V and straight polarity can produce superior protrusion topography without the damage of diamond crystal faces and the bond tail behind protrusive grit. It can obtain better ground surface of hard-brittle material than mechanical dressing with the bond tail.


Sign in / Sign up

Export Citation Format

Share Document