A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions

2014 ◽  
Vol 80 ◽  
pp. 62-80 ◽  
Author(s):  
Zhu Su ◽  
Guoyong Jin ◽  
Shuangxia Shi ◽  
Tiangui Ye ◽  
Xingzhao Jia
2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Dongyan Shi ◽  
Shuai Zha ◽  
Hong Zhang ◽  
Qingshan Wang

The free vibration analysis of the functionally graded (FG) double curved shallow shell structures with general boundary conditions is investigated by an improved Fourier series method (IFSM). The material properties of FG structures are assumed to vary continuously in the thickness direction, according to the four graded parameters of the volume distribution function. Under the current framework, the displacement and rotation functions are set to a spectral form, including a double Fourier cosine series and two supplementary functions. These supplements can effectively eliminate the discontinuity and jumping phenomena of the displacement function along the edges. The formulation is based on the first-order shear deformation theory (FSDT) and Rayleigh-Ritz technique. This method can be universally applied to the free vibration analysis of the shallow shell, because it only needs to change the relevant parameters instead of modifying the basic functions or adapting solution procedures. The proposed method shows excellent convergence and accuracy, which has been compared with the results of the existing literatures. Numerous new results for free vibration analysis of FG shallow shells with various boundary conditions, geometric parameter, material parameters, gradient parameters, and volume distribution functions are investigated, which may serve as the benchmark solution for future researches.


2013 ◽  
Vol 572 ◽  
pp. 189-192
Author(s):  
Dong Yan Shi ◽  
Xian Jie Shi ◽  
Wen L. Li ◽  
Zheng Rong Qin

An analytical method is derived for the free in-plane vibration analysis of annular plates with general boundary conditions. Under this framework, all the classical homogeneous boundary conditions can be treated as the special cases when the stiffness for each restraining springs is equal to either zero or infinity. The improved Fourier series solutions for the in-plane vibrations are obtained by employing the Rayleigh-Ritz method. A numerical example is presented to demonstrate the accuracy and reliability of the current method.


Sign in / Sign up

Export Citation Format

Share Document