Analysis of boundary layer formed on an upper horizontal surface of a paraboloid of revolution within nanofluid flow in the presence of thermophoresis and Brownian motion of 29 nm CuO

2017 ◽  
Vol 124-125 ◽  
pp. 22-36 ◽  
Author(s):  
O.K. Koriko ◽  
A.J. Omowaye ◽  
N. Sandeep ◽  
I.L. Animasaun
Heat Transfer ◽  
2020 ◽  
Vol 49 (8) ◽  
pp. 5020-5037
Author(s):  
Ankalagiri Chinna Venkata Ramudu ◽  
Kempannagari Anantha Kumar ◽  
Vangala Sugunamma ◽  
Naramgari Sandeep

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1450
Author(s):  
Essam R. El-Zahar ◽  
Ahmed M. Rashad ◽  
Laila F. Seddek

The goal of this investigation is to explore the influence of viscous dissipation and Brownian motion on Jeffrey nanofluid flow over an unsteady moving surface with thermophoresis and mixed convection. Zero mass flux is also addressed at the surface such that the nanoparticles fraction of maintains itself on huge obstruction. An aiding transformation is adopted to renovate the governing equations into a set of partial differential equations which is solved using a new fourth-order finite difference continuation method and various graphical outcomes are discussed in detail with several employed parameters. The spectacular influence of pertinent constraints on velocity and thermal curves are inspected through various plots. Computational data for the heat transfer rate and skin-friction coefficient are also reported graphically. Graphical outcomes indicate that an augmentation in buoyance ratio and thermophoretic parameter leads to diminish the velocity curves and increase the temperature curves. Furthermore, it is inspected that escalating Deborah number exhibits increasing in the skin friction and salient decreasing heat transmission. Increasing magnetic strength leads to a reduction in the skin friction and enhancement in the Nusselt number, whilst a reverse reaction is manifested with mixed convection aspects.


Sign in / Sign up

Export Citation Format

Share Document