Semi-analytic modelling of cutting forces in micro ball-end milling of NAK80 steel with wear-varying cutting edge and associated nonlinear process characteristics

2020 ◽  
Vol 169 ◽  
pp. 105343 ◽  
Author(s):  
Lin Zhou ◽  
Ben Deng ◽  
Fangyu Peng ◽  
Minghui Yang ◽  
Rong Yan
Author(s):  
Guo Dongming ◽  
Ren Fei ◽  
Sun Yuwen

The prediction of five-axis ball-end milling forces is quite a challenge due to difficulties of determining the underformed chip thickness and engaged cutting edge. To solve these concerns, this paper presents a new mechanistic model of cutting forces based on tool motion analysis. In the model, for undeformed chip thickness determination, an analytical model is first established to describe the sweep surface of cutting edge during the five-axis ball-end milling process of curved geometries. The undeformed chip thickness is then calculated according to the real kinematic trajectory of cutting edges under continuous change of the cutter axis orientation. A Z-map method is used to verify the engaged cutting edge and cutting coefficients are subsequently calibrated. The mechanistic method is applied to predict the cutting force. Validation tests are conducted under different cutter postures and cutting conditions. The comparison between predicted and measured values demonstrates the applicability of the proposed prediction model of cutting forces.


2001 ◽  
Author(s):  
Richard Y. Chiou ◽  
Bing Zhao

Abstract This paper presents an analytical convolution model of dynamic cutting forces in ball end milling of 3-D plane surfaces. The model takes into account the instantaneous slope on a sculptured surface to establish the chip geometry in cutting force calculation algorithm. A three-dimensional model of cutting forces in ball end milling is presented in terms of material properties, cutting parameters, machining configuration, and tool/work geometry. Based on the relationship of the local cutting force, chip load and engaged boundary, the total cutting force model is established via the angle domain convolution integration of the local forces in the feed, cross feed, axial direction, and inclination angle. The convolution integral leads to a periodic function of cutting forces in the angle domain and an explicit expression of the dynamic cutting force components in the frequency domain. Following the theoretical analysis, experimental study is discussed to illustrate the implementation procedure for force identification, and frequency domain data are presented to verify the analytical results.


2011 ◽  
Vol 10 (01) ◽  
pp. 101-108 ◽  
Author(s):  
XIULIN SUI ◽  
IMRE HORVATH ◽  
JIATAI ZHANG ◽  
PING ZHANG

Ball-end milling tools have been widely used in machining of complex freeform surfaces. The precision and efficiency of ball-end milling process can be improved by an accurate modeling of the tools, the tools' paths and the machining conditions. However, only rough geometric models have been applied so far, which do not consider the machining conditions and the physical changes. To achieve the best results, an accurate modeling of the cutting edge and the physical behavior of the entire cutter is needed. This paper proposes an articulated model that enumerates both the geometric characteristics and the physical effects acting on the cutting edge-segment of a ball-end milling cutter. The model considers the deformations caused by the milling forces, vibration, spindle eccentricity, together with thermal deformation and wear of the cutter. The mathematical description of the behavior has been transferred into a computational model. The pilot implementation has been tested in a practical application. The first findings show that the proposed theoretical model and implementation provide sufficiently precise information about the behavior of the cutter in virtual simulations; hence it can be the basis of a fully fledged and more efficient planning of milling processes.


Author(s):  
Wei-Hong Zhang ◽  
Gang Tan ◽  
Min Wan ◽  
Tong Gao ◽  
David Hicham Bassir

In milling process, surface topography is a significant factor that affects directly the surface integrity and constitutes a supplement to the form error associated with the workpiece deformation. Based on the tool machining paths and the trajectory equation of the cutting edge relative to the workpiece, a new and general iterative algorithm is developed here for the numerical simulation of the machined surface topography in multiaxis ball-end milling. The influences of machining parameters such as the milling modes, cutter runout, cutter inclination direction, and inclination angle upon the topography and surface roughness values are studied in detail. Compared with existing methods, the basic advantages and novelties of the proposed method can be resumed below. First, it is unnecessary to discretize the cutting edge and tool feed motion and rotation motion. Second, influences of cutting modes and cutter inclinations are studied systematically and explicitly for the first time. The generality of the algorithm makes it possible to calculate the pointwise topography value on any sculptured surface of the workpiece. Besides, the proposed method is proved to be more efficient in saving computing time than the time step method that is commonly used. Finally, some examples are presented and simulation results are compared with experimental ones.


2007 ◽  
Vol 189 (1-3) ◽  
pp. 85-96 ◽  
Author(s):  
M. Fontaine ◽  
A. Devillez ◽  
A. Moufki ◽  
D. Dudzinski

Sign in / Sign up

Export Citation Format

Share Document