Bézier extraction based isogeometric analysis for bending and free vibration behavior of multilayered functionally graded composite cylindrical panels reinforced with graphene platelets

2020 ◽  
Vol 183 ◽  
pp. 105744
Author(s):  
Vuong Nguyen Van Do ◽  
Chin-Hyung Lee
2020 ◽  
Vol 26 (19-20) ◽  
pp. 1627-1645 ◽  
Author(s):  
Alireza Rahimi ◽  
Akbar Alibeigloo ◽  
Mehran Safarpour

Because of promoted thermomechanical performance of functionally graded graphene platelet–reinforced composite ultralight porous structural components, this article investigates bending and free vibration behavior of functionally graded graphene platelet–reinforced composite porous cylindrical shell based on the theory of elasticity. Effective elasticity modulus of the composite is estimated with the aid of modified version of Halpin–Tsai micromechanics. Rule of mixtures is used to obtain mass density and Poisson’s ratio of the graphene platelet–reinforced composite shell. An analytical solution is introduced to obtain the natural frequencies and static behavior of simply supported cylindrical shell by applying the state-space technique along the radial coordinate and Fourier series expansion along the circumferential and axial direction. In addition, differential quadrature method is used to explore the response of the cylindrical shell in the other cases of boundary conditions. Validity of the applied approach is examined by comparing the numerical results with those published in the available literature. A comprehensive parametric study is conducted on the effects of different combinations of graphene platelets distribution patterns and porosity distribution patterns, boundary conditions, graphene platelets weight fraction, porosity coefficient, and geometry of the shell (such as mid-radius to thickness ratio and length to mid-radius ratio) on the bending and free vibration behavior of the functionally graded graphene platelet–reinforced composite porous cylindrical shell. The results of this study provide useful practical tips for engineers designing composite structures.


2020 ◽  
Vol 22 ◽  
pp. 2957-2963
Author(s):  
Abhilash Karakoti ◽  
Satyasreet Jena ◽  
Vishesh Ranjan Kar ◽  
Kandasamy Jayakrishna

Author(s):  
Lieu B. Nguyen ◽  
Thi Bui Viet ◽  
Hong-Yen Nguyen

We present a generalized three-variable high order shear deformation theory (THSDT) using isogeometric analysis (IGA) to analyze free vibration of functionally graded porous (FGP) plates reinforced by graphene platelets (GPLs) in this work. It is named as FGP-GPLs for a short. The proposed theory only has got three degrees of freedom (DOFs) per node as the same way of numerically solutions in three-dimensional (3D) solids. THSDT fulfills the classical plate theory (CPT), the first-order shear deformation theory (FSDT) and even the higher-order shear deformation theory (HSDT). IGA is chosen to analyze because of its noteworthy advantages in numerical computational sides of plate problems. In addition, the displacement field of THSDT needs the high continuity in approximated formulation with high-order derivatives for a weak form of fourth order equation. According to IGA formulation based on the generalized THSDT, the shear locking phenomenon is free. The variables of THSDT are less than HSDTs which contain five DOFs per node. The influences of weight fractions, the coefficient porosity, dispersion patterns of GPLs and distribution types of porosity on structure’s natural frequencies are studied through some numerical examples. In order to prove the reliability and accuracy of present method, the numerical results are compared to available published works. Keywords: FG-porous plate; graphene platelet reinforcements; three-variable high order shear deformation theory (THSDT); isogeometric analysis; free vibration.


Author(s):  
Amin Ghorbani Shenas ◽  
Parviz Malekzadeh ◽  
Sima Ziaee

This work presents an investigation on the free vibration behavior of rotating pre-twisted functionally graded graphene platelets reinforced composite (FG-GPLRC) laminated blades/beams with an attached point mass. The considered beams are constituted of [Formula: see text] layers which are bonded perfectly and made of a mixture of isotropic polymer matrix and graphene platelets (GPLs). The weight fraction of GPLs changes in a layer-wise manner. The effective material properties of FG-GPLRC layers are computed by using the modified Halpin-Tsai model together with rule of mixture. The free vibration eigenvalue equations are developed based on the Reddy’s third-order shear deformation theory (TSDT) using the Chebyshev–Ritz method under different boundary conditions. After validating the approach, the influences of the GPLs distribution pattern, GPLs weight fraction, angular velocity, the variation of the angle of twist along the beam axis, the ratio of attached mass to the beam mass, boundary conditions, position of attached mass, and geometry on the vibration behavior are investigated. The findings demonstrate that the natural frequencies of the rotating pre-twisted FG-GPLRC laminated beams significantly increases by adding a very small amount of GPLs into polymer matrix. It is shown that placing more GPLs near the top and bottom surfaces of the pre-twisted beam is an effective way to strengthen the pre-twisted beam stiffness and increase the natural frequencies.


Sign in / Sign up

Export Citation Format

Share Document