Effect of Nature-Inspired Needle-Shaped Vortex Generators on the Aerodynamic Features of a Double-Delta Wing

Author(s):  
Hamed Khodabakhshian Naeini ◽  
Mahdi Nili-Ahmadabadi ◽  
Yoon Seong Park ◽  
Kyung Chun Kim
AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 567-569
Author(s):  
Roy Y. Myose ◽  
Boon-Kiat Lee ◽  
Shigeo Hayashibara ◽  
L. S. Miller

1994 ◽  
Author(s):  
Hugo Gonzalez ◽  
Gary Erickson ◽  
Blair McLachlan ◽  
James Bell
Keyword(s):  

2014 ◽  
Vol 27 (3) ◽  
pp. 521-530 ◽  
Author(s):  
Jian Liu ◽  
Haisheng Sun ◽  
Zhitao Liu ◽  
Zhixiang Xiao

2013 ◽  
Vol 444-445 ◽  
pp. 286-292
Author(s):  
Bing Han ◽  
Min Xu ◽  
Xi Pei ◽  
Xiao Min An

The effect of slender body on the rolling characteristics of a double delta wing is found by comparing the numerical simulation results of the double delta wing and wing-body configuration. The coupled computation system solving the Navier-Stokes equations and the rolling motion equation alternatively to obtain the unsteady vortical flow around the two configurations while rolling. The results conclusively showed the upwash effect of the slender body enhanced the energy of strake vortex and merged vortex.The aerodynamic lag of double delta wing is weak, contrarily, the time lag effect of the wing-body configuration is significant. The asymmetry vortices structure nearby the trailing edge are believed to be the main reason for the unsteady time lag effect.


1994 ◽  
Vol 116 (3) ◽  
pp. 588-597 ◽  
Author(s):  
G. Biswas ◽  
P. Deb ◽  
S. Biswas

Laminar flow and heat transfer characteristics in a rectangular channel, containing built-in vortex generators of both the slender delta-wing and winglet-pair type, have been analyzed by means of solution of the full Navier–Stokes and energy equations. Each wing or winglet pair induces the creation of streamwise longitudinal vortices behind it. The spiraling flow of these vortices serves to entrain fluid from their outside into their core. These vortices also disrupt the growth of the thermal boundary layer and serve ultimately to bring about the enhancement of heat transfer between the fluid and the channel walls. The geometric configurations considered in the study are representative of single elements of either a compact gas-liquid fin-tube crossflow heat exchanger or a plate-fin crossflow heat exchanger. Physically, these vortex generators can be mounted on the flat surfaces of the above-mentioned heat exchangers by punching or embossing the flat surfaces. They can also act as spacers for the plate fins. Because of the favorable pressure gradient in the channel, the longitudinal vortices are stable and their influence persists over an area many times the area of the slender vortex generators. From a heat transfer point of view, the delta-wing generator is found to be more effective than the winglet-pair. However, most convective heat transfer processes encounter two types of loss, namely, losses due to fluid friction and those due to heat transfer across finite temperature gradient. Because these two phenomena are manifestations of irreversibility, an evaluation of the augmentation techniques is also made from a thermodynamic viewpoint. Conclusions that are drawn thus include discussion about the influence of vortex generators (wings/winglets) on irreversibility.


Sign in / Sign up

Export Citation Format

Share Document